摘 要: 希格斯(Higgs)粒子是迄今為止發現的第一個標量粒子.在粒子物理標準模型中,希格斯粒子起到了非常重要的作用.另一方面,在宇宙暴漲時期,使宇宙加速膨脹的往往是也一個標量場,或者標量粒子,被稱為暴漲子.由于能標的不同,希格斯粒子不能直接作為暴漲子,但通過一些間接的手段,暴漲子卻有可能是希格斯粒子在高能標時的另一種表現形式.本文作者回顧了希格斯暴漲模型,并且著重討論了宇宙學常數在暴漲中所起到的作用.
關鍵詞: 希格斯粒子; 暴漲宇宙; 宇宙學常數; 張標比
中圖分類號: O 412.1 文獻標識碼: A 文章編號: 1000-5137(2014)04-0384-07
最近,坐落在南極的BICEP2實驗組觀測到了宇宙微波背景輻射中的光子極化B-模式[1].由數據分析可知,這一結果證實了宇宙的確在早期發生過暴漲[2-4].實際上,在宇宙暴漲時期,度規場的張量擾動對應著引力波的產生,觀測到B-模式也就意味著觀測到了引力波,只是這種引力波是在早期宇宙中被激發的,稱為原初引力波.通過對B-模式的測量,能夠估計出張量擾動的幅度,通常人們會用一個稱為張標比的量來描述它.根據BICEP2實驗組的報告,張標比被限制在r=0.20+0.07-0.05(68% CL).
在最簡單的暴漲宇宙模型中,一個被稱為暴漲子的標量場驅動著宇宙加速膨脹.為了能夠使宇宙在早期有足夠長的暴漲時間,這個標量場需要有一個非常平坦的勢能V().當暴漲開始的時候,它將從勢能高的地方緩慢地滾向勢能低的地方.這個過程就稱為慢滾暴漲.現在雖然有很多暴漲模型,但是人們對暴漲子的本質還知之甚少.在暴漲場候選者當中,希格斯粒子是最佳人選,因為它不僅在粒子物理標準模型中起到重要作用,而且是迄今為止人們觀測到的第一個標量粒子.希格斯粒子的發現應當歸功于工作在歐洲大型強子對撞機(LHC)的科學家與工程師們[5-6].可是,要讓希格斯粒子實現早期宇宙的暴漲并不是件容易的事情,因為它無法給出正確的密度擾動幅度.關于這點,可以反過來從標量擾動的功率譜幅度As來估計出暴漲子的質量.用一個混沌暴漲[7]中的平方勢能V()=m22/2,可得:
4 總 結
最近,由BICEP2實驗組觀測到的宇宙微波背景輻射光子極化的B模式極大地推進了早期宇宙和基礎物理的研究.所測量到的張標比r≈0.2在區分和排除暴漲模型的時候,顯示了強有力的力量.希格斯粒子是最有希望成為暴漲場的基本粒子,但是它的質量mh~O(102) GeV要遠遠小于暴漲子的質量m~O(1013) GeV.為了解決這一等級問題,需要引入希格斯粒子與引力的非最小耦合或者非正則動能項.通常,希格斯粒子預言了一個比較小的張標比,不能很好地解釋BICEP2的結果.筆者回顧了現有的希格斯暴漲模型,并討論了宇宙學常數在暴漲時期的作用,發現希格斯混沌暴漲模型在宇宙學常數的幫助下不僅可以預言正確的譜指數ns≈0.96,較大的張標比r≈0.2,而且所對應的e-folding數在N≈50~60,足夠解決大爆炸宇宙學中的視界、平坦性等問題.
參考文獻:
[1] ADE P A R,AIKIN R W,BARKATS D,et al.[BICEP2 Collaboration].BICEP2 I:Detection of B-mode polarization at degree angular scales[J/OL].arXiv:1403.3985[astro-ph.CO].
[2] GUTH A H.The inflationary universe:A possible solution to the horizon and flatness problems[J].Phys Rev D,1981,23(347):347-356.
[3] LINDE A D.A new inflationary universe scenario:A possible solution of the horizon,flatness,homogeneity,isotropy and primordial monopole problems[J].Phys Lett B,1982,108(6):389-393.
[4] ALBRECHT A,STEINHARDT P J.Cosmology for grand unified theories with radiatively induced symmetry dreaking[J].Phys Rev Lett 1982,48:1220-1223.
[5] AAD G,ABAJYAN T,ABBOTT B,et al.[ATLAS Collaboration].Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC[J].Phys Lett B,2012,716(1):1-29.
[6] CHATRCHYAN S,KHACHATRYAN V,SIRUNYAN A M,et al.[CMS Collaboration].Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC[J].Phys Lett B,2012,716(1):30-61.
[7] LINDE A D.Chaotic inflation[J].Phys Lett B,1983,129(3-4):177-181.
[8] BEZRUKOV F L,SHAPOSHNIKOV M.The standard model higgs boson as the inflaton[J].Phys Lett B,2008,659(3):703-706.
[9] COOK J L,KRAUSS L M,LONG A J,et al.Is higgs inflation dead[J/OL].arXiv:1403.4971[astro-ph.CO].
[10] GERMANI C,KEHAGIAS A.New model of inflation with non-minimal derivative coupling of standard model higgs boson to gravity[J].Phys Rev Lett,2010,105(1):011302.
[11] GERMANI C,WATANABE Y,WINTERGERST N.Self-unitarization of new higgs inflation and compatibility with Planck and BICEP2 data[J/OL].arXiv:1403.5766[hep-ph].
[12] KAMABA K,KOBAYASHI T,YAMAGUCHI M,et al.Higgs G-inflation[J].Phys Rev D,2011,83(8):083515.
[13] KAMABA K,KOBAYASHI T,TAKAHASHI T,et al.Generalized Higgs inflation[J].Phys Rev D,2012,86(2):023504.
[14] KAMABA K,KOBAYASHI T,KUNIMITSU T,et al.Graceful exit from Higgs G-inflation[J].Phys Rev D,2013,88(12):123518.
[15] NAKAYAMA K,TAKAHASHI F.Higgs chaotic inflation in standard model and NMSSM[J].Journal of Cosmology and Astroparticle Physics,2011(2):10,1-9.
[16] NAKAYAMA K,TAKAHASHI F.Running kinetic inflation[J].Journal of Cosmology and Astroparticle Physics,2010,11(9):1-24.
[17] TAKAHASHI F.Linear inflation from running kinetic term in supergravity[J].Phys Lett,2010,693(2):140-143.
[18] NAKAYAMA K,TAKAHASHI F.Higgs chaotic inflation and the primordial B-mode polarization discovered by BICEP2[J/OL].arXiv:1403.4132[hep-ph].
[19] GONG Y.The challenge for single field inflation with BICEP2 result[J/OL].arXiv:1403.5716[gr-qc].
[20] ADE P A R,AGHANIM N,ARMITAGE-CAPLAN C,et al.[Planck Collaboration].Planck 2013 results.XXII.Constraints on inflation[J/OL].arXiv:1303.5082[astro-ph.CO].
[21] AAD G,ABAJYAN T,ABBOTT B,[ATLAS Collaboration],Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC[J].Phys Lett B,2013,726(1-3):88-119.
[22] CHATRCHYAN S,KHACHATRYAN V,SIRUNYAN A M,et al.[CMS Collaboration].Observation of a new boson with mass near 125 GeV in pp collisions ats=7 and 8 TeV[J].Journal of High Energy Physics,2013(6),081-1~117.
[23] 馮朝君,李新洲.暴漲宇宙與宇宙學常數問題[J].上海師范大學學報:自然科學版,2014,43(4):378-383.
[24] ZHANG J F,LI Y H,ZHANG X.Sterile neutrinos help reconcile the observational results of primordial gravitational waves from Planck and BICEP2[J/OL].arXiv:1403.7028[astro-ph.CO].
[25] DVORKIN C,WYMAN M,RUDD D H,et al.Neutrinos help reconcile Planck measurements with both Early and Local Universe[J/OL].arXiv:1403.8049[astro-ph.CO].
[26] ZHANG J F,LI Y H,ZHANG X.Cosmological constraints on neutrinos after BICEP2[J/OL].arXiv:1404.3598[astro-ph.CO].
[27] 馮朝君,李新洲.無窮級數單標量場暴漲宇宙模型與原初引力波[J].上海師范大學學報:自然科學版,2014,43(4):391-398.
[28] CHENG C,HUANG Q G.Constraints on the cosmological parameters from BICEP2,Planck and WMAP[J/OL].arXiv:1403.7173[astro-ph.CO].
[29] CHENG C,HUANG Q G.Constraint on inflation model from BICEP2 and WMAP 9-year data[J/OL].arXiv:1404.1230[astro-ph.CO].
[30] LI H,XIA J Q,ZHANG X.Global fitting analysis on cosmological models after BICEP2[J/OL].arXiv:1404.0238[astro-ph.CO].
[31] WU F,LI Y,LU Y,CHEN X.Cosmological parameter fittings with the BICEP2 data[J/OL].arXiv:1403.6462[astro-ph.CO].
[32] LIZARRAGA J,URRESTILLA J,DAVERIO D,et al.Can topological defects mimic the BICEP2 B-mode signal[J/OL].arXiv:1403.4924[astro-ph.CO].
[33] HO C M,HSU S D.Does the BICEP2 observation of cosmological tensor modes imply an era of nearly planckian energy densities[J/OL].arXiv:1404.0745[hep-ph].
Abstract: Higgs is the only scalar particle that already observed up to now.In the standard model of particle physics,Higgs plays a very important role.On the other hand,inflation is also driven by scalar field called inflaton.Higgs boson can not be the inflaton since the large hierarchy energy scale of the mass between inflaton and itself.However,by using some indirectly method,inflaton could be another aspect of the Higgs boson.In this paper,the authors review some Higgs inflation models and discuss the role of the cosmological constant during inflation.
Key words: Higgs boson; inflation; cosmological constant; tensor-to-scalar ratio
(責任編輯:顧浩然)