摘要 脫落酸可誘導(dǎo)氣孔關(guān)閉,降低植物體內(nèi)水分損耗。關(guān)于脫落酸調(diào)控氣孔運(yùn)動(dòng)的作用方式尚不明確。該研究介紹了脫落酸下游信號(hào)Ca2+、H2O2和NO對(duì)氣孔運(yùn)動(dòng)的調(diào)節(jié)。這對(duì)于進(jìn)一步研究脫落酸信號(hào)轉(zhuǎn)導(dǎo)的具體作用機(jī)制具有重要的意義。
關(guān)鍵詞 脫落酸;氣孔運(yùn)動(dòng);保衛(wèi)細(xì)胞;研究進(jìn)展
中圖分類號(hào) S184 文獻(xiàn)標(biāo)識(shí)碼 A 文章編號(hào) 0517-6611(2014)25-08483-03
Abstract Abscisic acid induces stomatal closure and reduces water loss in plant. It is unclear about the way of abscisic acid regulating stomatal movement. This view introduces the downstream signals Ca2+, H2O2 and NO of abscisic acid regulation of stomatal movement, which has great significance in abscisic acid signal transduction mechanism for the further research.
Key words Abscisic acid; Stomatal movement; Guard cell; Research progress
脫落酸(Abscisic acid,ABA)是一種重要的植物激素。當(dāng)受到生物和非生物脅迫時(shí),植物體內(nèi)會(huì)產(chǎn)生一系列復(fù)雜的防御機(jī)制[1]。ABA在植物的生長(zhǎng)過(guò)程中起重要的作用,例如抑制種子發(fā)芽和側(cè)根生長(zhǎng),提高植物對(duì)病菌入侵和環(huán)境脅迫的耐受程度[2-4]。ABA在植物的整個(gè)生長(zhǎng)發(fā)育過(guò)程中是一個(gè)“抗逆誘導(dǎo)因子”,對(duì)氣孔運(yùn)動(dòng)、水分調(diào)節(jié)、光合作用、衰老及對(duì)逆境適應(yīng)等生理過(guò)程都有明顯的調(diào)控作用。內(nèi)源ABA水平的提高和外源ABA的處理都能明顯增加植物對(duì)環(huán)境脅迫的抗性[5]。
氣孔本質(zhì)上是氣孔復(fù)合體的簡(jiǎn)稱,通常是由一對(duì)啞鈴形或腎形的保衛(wèi)細(xì)胞以及它們之間的孔隙構(gòu)成[6]。大部分植物的氣孔位于葉片表面。氣孔通過(guò)控制植物與外界的水分和氣體交換來(lái)適應(yīng)復(fù)雜多變的環(huán)境。氣孔雖然很小,但是它對(duì)于植物水分利用、物質(zhì)代謝、營(yíng)養(yǎng)吸收等以及整個(gè)生態(tài)系統(tǒng)的調(diào)節(jié)作用不可小覷[7]。氣孔是依據(jù)光合作用同化的CO2量和蒸騰失水量來(lái)調(diào)控氣孔的開(kāi)閉。氣孔運(yùn)動(dòng)的方式看似簡(jiǎn)單,但蘊(yùn)涵著十分復(fù)雜的生理過(guò)程,涉及保衛(wèi)細(xì)胞對(duì)內(nèi)外環(huán)境的感應(yīng)、信號(hào)的轉(zhuǎn)導(dǎo)、離子的跨膜運(yùn)輸?shù)纫幌盗羞^(guò)程。可以說(shuō),植物各種重要的生理生化活動(dòng)都與氣孔運(yùn)動(dòng)有著密切的關(guān)系[8]。
ABA在調(diào)節(jié)氣孔開(kāi)閉、減少水分散失方面起重要作用[9-14]。干旱脅迫、鹽堿脅迫、溫度脅迫等非生物脅迫增加了植物體內(nèi)的ABA生物合成,也擴(kuò)大了ABA在植物體內(nèi)的分布范圍[15]。保衛(wèi)細(xì)胞膨壓增加吸水膨脹和膨壓降低失水收縮是導(dǎo)致氣孔運(yùn)動(dòng)的直接原因。如果植物通過(guò)氣孔失去的水量大于從根部攝取的水量,那么植物組織就會(huì)遭到破壞,導(dǎo)致細(xì)胞死亡[1]。通過(guò)對(duì)保衛(wèi)細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)途徑的研究表明,ABA能直接導(dǎo)致保衛(wèi)細(xì)胞發(fā)生形態(tài)學(xué)彎曲,致使氣孔關(guān)閉[16],阻止水分散失。提高植物抗旱能力是氣孔關(guān)閉的首要作用。在逆境脅迫下,ABA在植物體內(nèi)的含量迅速增加,并且與受體結(jié)合,通過(guò)跨膜運(yùn)輸,經(jīng)下游信號(hào)第二信使Ca2+、H2O2、NO等進(jìn)行傳遞并且放大,控制氣孔運(yùn)動(dòng)。
1 與ABA相關(guān)的植物氣孔運(yùn)動(dòng)調(diào)節(jié)
植物氣孔運(yùn)動(dòng)受自身遺傳和外界環(huán)境因素的影響。水分、溫度、光照、CO2濃度等環(huán)境因素對(duì)氣孔運(yùn)動(dòng)有重要影響。植物將感知的外界環(huán)境信號(hào)轉(zhuǎn)變?yōu)閮?nèi)部信號(hào),從而控制氣孔的張開(kāi)與關(guān)閉。
1.1 Ca2+對(duì)氣孔運(yùn)動(dòng)的調(diào)節(jié)
研究證明,Ca2+在保衛(wèi)細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中發(fā)揮著不容小視的作用。ABA能夠迅速提高胞液中游離鈣離子的濃度[17],從而抑制氣孔張開(kāi)。ABA誘導(dǎo)氣孔關(guān)閉可能存在2種不同的信號(hào)途徑:鈣離子依賴型誘導(dǎo)和非鈣離子依賴型誘導(dǎo)[18],其中依賴于Ca2+的信號(hào)轉(zhuǎn)導(dǎo)過(guò)程是主要類型。依賴于Ca2+信號(hào)途徑是指ABA與保衛(wèi)細(xì)胞受體結(jié)合后,細(xì)胞質(zhì)膜上的Ca2+通道被H2O2激活,由H2O2激活的Ca2+通道引起Ca2+內(nèi)流及完整的保衛(wèi)細(xì)胞中胞質(zhì)自由鈣離子濃度升高[19],因而引發(fā)一系列反應(yīng),最終導(dǎo)致氣孔關(guān)閉。在ABA誘導(dǎo)的玉米保衛(wèi)細(xì)胞氣孔關(guān)閉的信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中,鈣離子扮演著重要的角色[20]。絕大部分的鈣以結(jié)合態(tài)的形式存在于細(xì)胞內(nèi),貯存在葉粒體、線粒體、內(nèi)質(zhì)網(wǎng)、液泡等部位。它們都是細(xì)胞內(nèi)的“鈣庫(kù)”。當(dāng)細(xì)胞受到外界環(huán)境刺激時(shí),從質(zhì)外體經(jīng)質(zhì)膜或胞內(nèi)“鈣庫(kù)”向胞液運(yùn)輸?shù)腃a2+量增加,胞質(zhì)中Ca2+濃度提高后,通過(guò)激活Ca2+調(diào)節(jié)的靶酶,Ca2+依賴的蛋白激酶(pKCa2+或CDPK)或蛋白磷酸酶,或與Ca2+受體蛋白結(jié)合,再通過(guò)激酶將Ca2+濃度變化中所蘊(yùn)含的外部信息表達(dá)為生理生化過(guò)程,完成信息傳遞之后,Ca2+通過(guò)細(xì)胞中濃度調(diào)節(jié)又回落到靜息態(tài)水平,此時(shí)Ca2+與受體蛋白分離[21]。這樣通過(guò)胞質(zhì)內(nèi)Ca2+的濃度變化,可以把細(xì)胞外的信息傳遞到細(xì)胞內(nèi),調(diào)節(jié)相應(yīng)的生理活動(dòng)[22]。隨著膜片鉗技術(shù)的廣泛應(yīng)用與改進(jìn),一些學(xué)者已檢測(cè)到植物細(xì)胞質(zhì)膜內(nèi)Ca2+通道活性的改變。Hamilton等[23]在大豆保衛(wèi)細(xì)胞質(zhì)膜上檢測(cè)到通透Ca2+的單通道電流,得出ABA可增加Ca2+電流,而胞質(zhì)自由鈣離子濃度則抑制Ca2+電流。此外,胞內(nèi)Ca2+ 濃度增加對(duì)電壓的變化敏感,說(shuō)明保衛(wèi)細(xì)胞質(zhì)膜上可能存在一個(gè)受細(xì)胞膜超級(jí)化和ABA調(diào)控的內(nèi)流Ca2+通道。ABI1和ABI2是一類Ca2+調(diào)節(jié)的磷酸酶,通過(guò)磷酸化反應(yīng)把ABA連接到Ca2+之間的信號(hào)傳遞。ABI1和ABI2抑制ABA對(duì)Ca2+產(chǎn)生影響,且具有反饋負(fù)調(diào)控作用[24]。環(huán)腺苷二磷酸核糖(Cyclic adenosine diphosphate ribose,cADPR)也參與ABA調(diào)控的Ca2+運(yùn)輸[25]。在不依賴Ca2+的途徑中,ABA 可引起保衛(wèi)細(xì)胞內(nèi)H2O2的積累,使胞質(zhì)堿化,有效地抑制質(zhì)膜K+內(nèi)向通道,活化K+外向通道,導(dǎo)致保衛(wèi)細(xì)胞K+濃度降低,細(xì)胞膨壓減小,氣孔關(guān)閉[26-27]。ABA誘導(dǎo)的氣孔關(guān)閉信號(hào)轉(zhuǎn)導(dǎo)途徑無(wú)論是否依賴Ca2+,都需要作用于離子通道,調(diào)節(jié)胞內(nèi)離子濃度以控制氣孔開(kāi)閉[28]。
1.2 H2O2對(duì)氣孔運(yùn)動(dòng)的調(diào)節(jié)
H2O2是活性氧(Reactive oxygen species,ROS)的一種,是植物中重要的第二信使之一,也是保衛(wèi)細(xì)胞響應(yīng)ABA的下游物質(zhì)之一[29]。H2O2的來(lái)源有很多,早期的研究主要集中在煙酰胺腺嘌呤二核苷酸磷酸氧化酶(Nicotinamide adenine dinucleotide phosphate oxidase,NOX)上[23]。NOX催化氧氣和煙酰胺腺嘌呤二核苷酸磷酸(Nicotinamide adenine dinucleotide phosphate,NADPH)生成超氧陰離子自由基,超氧陰離子自由基經(jīng)歧化反應(yīng)后形成的H2O2通過(guò)某種通道進(jìn)入胞質(zhì)內(nèi)[7]。NADPH是NOX介導(dǎo)產(chǎn)生H2O2的重要底物[30]。Zhang等[26,31]在擬南芥和蠶豆表皮外源ABA處理的試驗(yàn)中,首次證明了ABA可以誘導(dǎo)氣孔保衛(wèi)細(xì)胞中合成H2O2。NADPH氧化酶是調(diào)節(jié)H2O2產(chǎn)生的關(guān)鍵酶。ABA 通過(guò)激活絲氨酸/蘇氨酸蛋白激酶OST1誘導(dǎo)H2O2的合成,擬南芥AtOST1基因突變體經(jīng)ABA的處理后不產(chǎn)生H2O2且氣孔不關(guān)閉,但是外源H2O2能夠誘導(dǎo)突變體的氣孔關(guān)閉[32]。Bright等[33]研究發(fā)現(xiàn),在擬南芥中ABA誘導(dǎo)的氣孔關(guān)閉依賴于H2O2的合成。韓燕等[34]研究表明,滲透脅迫及外源ABA處理既能促進(jìn)保衛(wèi)細(xì)胞內(nèi)源H2O2的形成,又能誘導(dǎo)氣孔關(guān)閉。安國(guó)勇等[35]證明,不同濃度的H2O2可抑制蠶豆葉片氣孔張開(kāi),10 mmol/L H2O2最有效,10 μmol/L仍使氣孔關(guān)閉,其機(jī)制是H2O2抑制保衛(wèi)細(xì)胞質(zhì)膜內(nèi)向K+通道,激活外向K+通道,使K+外流引起保衛(wèi)細(xì)胞滲透壓的降低,導(dǎo)致氣孔關(guān)閉。
1.3 NO對(duì)氣孔運(yùn)動(dòng)的調(diào)節(jié)
信號(hào)分子NO在植物發(fā)育、生長(zhǎng)、衰老、細(xì)胞程序性死亡、抗病及對(duì)逆境脅迫等不同形式的應(yīng)答中有很大的作用[36]。NO參與ABA誘導(dǎo)植物氣孔關(guān)閉的過(guò)程。NO是植物體內(nèi)普遍存在的一種內(nèi)源物質(zhì),在細(xì)胞內(nèi)和細(xì)胞間的信息傳遞方面起重要作用[37]。一些學(xué)者的研究結(jié)果證實(shí),ABA可誘導(dǎo)保衛(wèi)細(xì)胞中NO含量的增加。蠶豆、豌豆、擬南芥的保衛(wèi)細(xì)胞和其他表皮細(xì)胞中的NO在ABA誘導(dǎo)下迅速合成[33-38],且NO的生物合成是ABA誘導(dǎo)氣孔關(guān)閉所必需的。NO可能通過(guò)激活質(zhì)膜上的Cl-通道、抑制質(zhì)膜K+內(nèi)流通道和調(diào)節(jié)保衛(wèi)細(xì)胞絲裂原活化蛋白激酶(Mitogenactivated protein kinase,MAPK)的活性參與ABA的氣孔運(yùn)動(dòng)調(diào)節(jié)機(jī)制[39-42]。外源NO和ABA誘導(dǎo)楊樹(shù)離體葉片氣孔關(guān)閉時(shí)具有劑量效應(yīng)。NO能加強(qiáng) ABA 誘導(dǎo)氣孔關(guān)閉的作用。NO清除劑(cPTIO)能極大程度地減弱NO和ABA對(duì)氣孔關(guān)閉的誘導(dǎo)作用[43]。Li等[44]試驗(yàn)表明,NO也可以抑制油菜等植物葉片氣孔張開(kāi),使氣孔開(kāi)度減小。Neill等[39]認(rèn)為,ABA和NO誘導(dǎo)的氣孔關(guān)閉需要cADPR和環(huán)磷酸鳥(niǎo)苷(Cyclic guanosine monophosphate,cGMP)的合成。Desikan等[42]研究表明,NO以依賴cADPR的方式促使胞內(nèi)鈣庫(kù)釋放Ca2+,因而實(shí)現(xiàn)氣孔關(guān)閉。
2 展望
脫落酸作為作物體內(nèi)的一種重要激素,在提高作物抗逆性的同時(shí)還能夠提高作物的產(chǎn)量和品質(zhì)等。利用ABA調(diào)節(jié)作物的抗逆性將是農(nóng)業(yè)抗災(zāi)、減災(zāi)研究的重要方向之一[45]。經(jīng)過(guò)多年研究,各國(guó)學(xué)者對(duì)ABA這個(gè)重要的植物激素已有較深入的了解。植物在進(jìn)化過(guò)程中形成了一種比較完善的適應(yīng)不良環(huán)境的機(jī)制。外界逆境條件能觸發(fā)不同的信號(hào)轉(zhuǎn)導(dǎo)途徑。植物傳遞ABA各信號(hào)途徑之間是怎樣相互協(xié)調(diào),從而使細(xì)胞快速產(chǎn)生生理反應(yīng),仍亟待解決。另外,關(guān)于ABA誘導(dǎo)氣孔運(yùn)動(dòng)的研究大多數(shù)通過(guò)外源ABA。這并不能非常確切地模擬內(nèi)源ABA的作用,與內(nèi)源ABA相比存在一定的差異。植物細(xì)胞生命活動(dòng)的重要過(guò)程之一是細(xì)胞的信號(hào)轉(zhuǎn)導(dǎo),但是對(duì)ABA信號(hào)轉(zhuǎn)導(dǎo)的具體作用機(jī)制等尚不十分明確。
參考文獻(xiàn)
[1] LIM C W,BAEK W,LIM S,et al.ABA signal transduction from ABA receptors to ion channels [J].Genes Genomics,2012,34(4):345-353.
[2] TON J,F(xiàn)LORS V,MAUCHMANI B.The multifaceted role of ABA in disease resistance [J].Trends in Plant Science,2009,14(6):310-317.
[3] ROBERTSEILANIANTZ A,NAVARRO L,BARI R,et al.Pathological hormone imbalances [J].Current Opinion in Plant Biology,2007,10(4):372-379.
[4] FINKELSTEIN R R,GAMPALA S S,ROCK C D.Abscisic acid signaling in seeds and seedlings [J].Plant Cell,2002,14(Sl):15-45.
[5] 王福森,李晶,溫寶陽(yáng),等.黑龍江省楊樹(shù)栽培歷史、現(xiàn)狀及發(fā)展趨勢(shì) [J].防護(hù)林科技,2003,54(1):54-56.
[6] 成雪峰.植物氣孔及其運(yùn)動(dòng)機(jī)理概述 [J].生物學(xué)教學(xué),2013,38(12):7-8.
[7] 高春娟,夏曉劍,師愷,等.植物氣孔對(duì)全球環(huán)境變化的響應(yīng)及其調(diào)控防御機(jī)制[J].植物生理學(xué)報(bào),2012,48(1):19-28.
[8] 楊金華,杜克久.植物葉片氣孔運(yùn)動(dòng)機(jī)制研究進(jìn)展 [J].河北林果研究,2011,26(1):47-52.
[9] WILKINSON S,DAVIES W J.Drought,ozone,ABA and ethylene:new insights from cell to plant to community [J].Plant Cell and Environment,2010,33(4):510-525.
[10] ASSMANN S M.Open stomatal opens the door to ABA signaling in Arabidopsis guard cells [J].Trends in Plant Science,2003,8(4):151-153.
[11] HUBBARD K E,NISHIMURA N,HITOMI K,et al.Earlyabscisic acid signal transduction mechanisms:newly discovered components and newly emerging questions [J].Genes Development,2010,24:1695-1708.
[12] POPKO J,HANSCH R,MENDEL R R,et al.The role of abscisic acid and auxin in the response of poplar to abiotic stress [J].Plant Biology,2010,12(2):242-258.
[13] CUTLER S R,RODRIGUEZ P L,F(xiàn)INKELSTEIN R R,et al.Abscisic acid:emergence of a coresignaling network [J].Annual Review of Plant Biological,2010,61:651-679.
[14] WASILEWSKA A,VLAD F,SIRICHANDRA C,et al.An update on abscisic acid signaling in plants and more [J].Molecular Plant,2008,1(2):198-217.
[15] WILKINSON S,DAVIES W J.ABAbased chemical signalling:the coordination of responses tostress in plants [J].Plant Cell and Environment,2002,25(2):195-210.
[16] LIANG J S,ZHANG J H,WONG M H.How do roots control xylem sap ABA concentration in response to soil drying?[J].Plant and Cell Physiology,1997,38(1):10-16.
[17] MCAINSH M R,BROWNLEE C,HETHERINGTON A M.Abscisic acidinduced elevation of guard cell cytosolic Ca2+ precedes stomatal closure [J].Nature,1990,343:186-188.
[18] GILROY S,READ N D,TREWAVAS A J.Elevation of cytoplasmic Ca2+ by caged calcium or caged inositol triphosphate initiates stomatal closure [J].Nature,1990,346:769-771.
[19] PEI Z M,MURATA Y,BENNING G,et al.Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells [J].Nature,2000,406:731-734.
[20] 劉子會(huì),張紅梅,郭秀林.ABA 誘導(dǎo)的玉米保衛(wèi)細(xì)胞胞質(zhì)鈣離子濃度的變化[J].中國(guó)農(nóng)業(yè)科學(xué),2008,41(10):3357-3362.
[21] 呂東.ATHK1參與ABA誘導(dǎo)氣孔關(guān)閉的信號(hào)轉(zhuǎn)導(dǎo)過(guò)程 [D].開(kāi)封:河南大學(xué),2012:1-8.
[22] SCHROEDER J I,KWAK J M,ALLEN G J.Guard cell abscisic acid signaling and engineering drought hardiness in plants [J].Nature,2001,410:327-330.
[23] HAMILTON D W A,HILLS A,KOHLER B.Ca2+ channels at the plasma membrane of stomatal guard are activated by hyperpolarization and abscisic acid [J].Proceedings of the National Academy of Sciences of the United States of America,2000,97:4967-4972.
[24] MERLOT S,GOSTI F,GUERRIER D,et al.The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signaling pathway [J].Plant Cell,2001,25:295-303.
[25] LECKIA C P,MCAINSH M R,ALLEN G J,et al.Abscisic acidinduced stomatal closure mediated by cyclic ADPribose [J].Proceedings of the National Academy of Sciences of the United States of America,1998,95:15837-15842.
[26] ZHANG X,MIAO Y C,AN G Y,et al.K+ channels inhibited by hydrogen peroxide mediate abscisic acid signaling in guard cells [J].Cell Research,2001,11(3):195-202.
[27] BLATT M R.Reassessing roles for Ca2+ in guard cell singalling [J].Journal of Experimental Botany,1999,50:989-999.
[28] 熊俊蘭,譚瑞,孔海燕,等.植物ABAH2O2介導(dǎo)的氣孔關(guān)閉[J].植物生理學(xué)報(bào),2012,48(8):739-746.
[29] PITZSCHKE A,HIRT H.Mitogenactivated protein kinases and reactive oxygen species signaling in plants [J].Plant Physiological,2006,141(2):351-356.
[30] MURATA Y,PEI Z M,MORI I C,et al.Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi11 and abi21 protein phosphatase 2C Mutants [J].Plant Cell,2001,13(11):2513-2523.
[31] MIAO Y C,SONG C P,DONG F C,et al.ABAinduced hydrogen peroxide generation in guard cells of Vicia faba [J].Acta Phytophysiologica Sinica,2000,26(1):53-58.
[32] MUSTILLI A C,MERLOT S,VAVASSEUR A,et al.Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts up stream of reactive oxygen species production [J].Plant Cell,2002,14(12):3089-3099.
[33] BRIGHT J,DESIKAN R,HANCOCK J T,et al.ABAinduced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis [J].The Plant Journal,2006,45(1):113-122.
[34] 韓燕,佘小平.NO,H2O2介導(dǎo)根系滲透脅迫和脫落酸誘導(dǎo)的氣孔關(guān)閉 [J].陜西師范大學(xué)學(xué)報(bào):自然科學(xué)版,2007,35(4):83-87.
[35] 安國(guó)勇,宋純鵬,張驍,等.過(guò)氧化氫對(duì)蠶豆氣孔運(yùn)動(dòng)和質(zhì)膜K+通道的影響[J].植物生理學(xué)報(bào),2000,26(5):458-463.
[36] LAMATTINA L,GARCIAMATTA C,GRAZIANO M,et al.Nitric oxide:the versatility of an extensive signal molecule [J].Annual Review of Plant Biological,2003,54:109-136.
[37] 錢寶云,李霞.植物氣孔運(yùn)動(dòng)調(diào)節(jié)的新進(jìn)展[J].植物研究,2013,33(1):120-128.
[38] 呂東,張驍,江靜.NO可能作為H2O2的下游信號(hào)介導(dǎo)ABA誘導(dǎo)的蠶豆氣孔關(guān)閉 [J].植物生理與分子生物學(xué)學(xué)報(bào),2005,31(1):62-70.
[39] NEILL S J,DESIKAN R,CLARKE A.Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells [J].Plant Physiology,2002,128:13-16.
[40] NEILL S J,DESIKAN R,CLARKE A,et al.Hydrogen peroxide and nitric oxide as signalling molecules in plants [J].Journal of Experimental Botany,2002,53(327):1237-1247.
[41] GARCIAMATA C,GAY R,SOKOLVSKI S,et al.Nitric oxide regulate K+ and Cl- channels in guard cells through a subset of abscisic scidevoked signaling pathways [J].Proceedings of the National Academy of Sciences,2003,100:1116-1121.
[42] DESIKAN R,CHEUNG M K,BRIGHT J,et al.ABA,hydrogen peroxide and nitric oxide signalling in stomatal guard cells [J].Journal of Experimental Botany,2004,55(395):205-212.
[43] 王淼,李秋榮,付士磊,等.一氧化氮是脫落酸誘導(dǎo)楊樹(shù)葉片氣孔關(guān)閉的信號(hào)分子[J].應(yīng)用生態(tài)學(xué)報(bào),2004,15(10):1776-1780.
[44] LI Y,YIN H,WANG Q,et al.Oligochitosan induced Brassica napus L.production of NO and H2O2 and their physiological function [J].Carbohydrate Polymers,2009,75(4):612-617.
[45] 郝格格,孫忠富,張錄強(qiáng),等.脫落酸在植物逆境脅迫研究中的進(jìn)展[J].中國(guó)農(nóng)學(xué)通報(bào),2009,25(18):212-215.