姚婕 趙艷玲
摘 要 銅/鋅超氧化物歧化酶(Cu,Zn-SOD)能清除植物體內有害的活性氧(ROS),參與植株遭受逆境脅迫時的應激反應等過程。銅分子伴侶(CCS)可以傳遞銅離子到Cu,Zn-SOD當中,并將其激活生成有活性的酶分子,依賴CCS協助是Cu,Zn-SOD主要的激活途徑。植物在銅缺乏的環境下會誘導啟動子結合蛋白(SPL7)和小RNA398(miR398)的表達,miR398通過降解編碼Cu,Zn-SOD的mRNA抑制Cu,Zn-SOD的生成,從而調控植物體內銅平衡。本文主要對植物Cu,Zn-SOD激活和調控途徑進行綜述。
關鍵詞 Cu,Zn-SOD ;CCS ;miR398 ;SPL7 ;調控途徑
分類號 Q943.2
Abstract Superoxide dismutases (Cu,Zn-SODs) are important antioxidant enzymes that catalyze the disproportionation of superoxide anion to oxygen and hydrogen peroxide to guard cells against superoxide toxicity. The major pathway for activation of copper/zinc SOD (CSD) requiring the CCS copper chaperone to insert copper and activate SOD1 through oxidation of an intramolecular disulfide. Expression of miR398 and SPL7 (for SQUAMOSA promoter binding protein-like7) are induced in response to copper deficiency and miR398 is involved in the degradation of mRNAs encoding copper/zinc superoxide dismutase. This paper reviewed on plant Cu, Zn-SOD activation and regulatory pathways.
Keywords Cu,Zn-SOD ; CCS ; miR398 ; SPL7 ; regulatory pathways
1972年,美國Richardson實驗室首次獲得了可供X射線晶體結構分析的Cu,Zn-SOD(CSD)晶體[1]。1982年,JA Tainer等從牛血紅蛋白中得到了由SOD1基因編碼的Cu,Zn-SOD的三維結構,并建立了以其結構為基礎的酶催化機制和快速反應機制[2]。在Cu,Zn-SOD成熟過程中,銅離子的獲得是關鍵步驟,熱力學分析顯示,Cu,Zn-SOD利用銅結合位點逐漸增強的親和力,才實現了銅離子在含銅蛋白之間的傳遞[3]。銅分子伴侶(copper chaperone for SOD1, CCS)可以傳遞銅離子到Cu,Zn-SOD當中,并將其激活生成有活性的酶分子。第一個描述酵母和人類CCS的是Valentine & Gralla[4]1997年發表于Science的一篇文章,此后,CCS就被廣泛發現存在于真核生物中,并和Cu/Zn-SOD一起表達。目前,擬南芥、水稻、玉米、大豆、土豆、龍眼[5]等植物的CCS已被克隆。
最近的研究表明,Cu,Zn-SOD的表達受到miRNA的調控。植物在銅缺乏的環境下會誘導生成啟動子結合蛋白(SQUAMOSA promoter binding protein-like7,SPL7),SPL7直接和miR398啟動子結合并激活其表達,miR398通過降解編碼Cu,Zn-SOD的mRNA從而抑制了Cu,Zn-SOD的生成,此時銅離子則參與到植物體內另一個重要的含銅蛋白-質體藍素的合成過程當中,保證了植物的正常生長[6]。
1 Cu,Zn-SOD激活途徑
1.1 CCS的研究進展
分子進化分析顯示,CCS的中心結構域和Cu,Zn-SOD高度同源[7],其N端結構域對激活Cu,Zn-SOD起決定性作用[8]。CCS基因啟動子區域包含了與植物生長素和應激響應有關的順勢作用元件,會被植物生長素,赤霉素,果糖,蔗糖,葡萄糖等誘導表達。不同植物組織中的CCS表達量也有所差異,Trindade[9]將馬鈴薯CCS啟動子融合熒光色素基因,發現CCS在皮質區,如莖、匍匐枝和塊莖表達水平最高,根部和花表達水平較低。植物在衰老狀態下,CCS的表達量也會隨之增加[10]。
Cohu等[11]發現,當擬南芥CCS無效突變后,Cu,Zn-SOD活性會隨之喪失,這說明擬南芥細胞質和葉綠體中的Cu,Zn-SOD需要CCS才能激活。細胞X連鎖凋亡抑制蛋白(X-linked inhibitor of apoptosis,XIAP)也需要CCS傳遞銅離子,XIAP的環指結構包含E3泛素連接酶活性,通過泛素蛋白酶體途徑可促進XIAP自身或與其相互作用的蛋白分子泛素化而降解,因此XIAP被認為是通過對含銅蛋白的降解從而調控銅離子平衡的。有趣的是CCS與XIAP的互相作用而導致的泛素化卻能增強CCS對Cu,Zn-SOD的活性而不是自身蛋白酶體的降解[12]。這些研究表明CCS在調控植物體內銅離子平衡過程中發揮特殊作用。
1.2 依賴CCS的CSD激活途徑
近幾年來,關于依賴CCS激活Cu,Zn-SOD的機制已被闡明。SOD1前體多肽內由于第144位上含有一個脯氨酸(pro),這個結構阻止了5.5 處兩個半胱氨酸(cys)分子內二硫鍵的形成,所以SOD1前體多肽內并沒有二硫鍵[13]。鋅離子在銅離子與SOD1結合之前首先進入金屬結合位點。在氧脅迫條件下,SOD1前體比成熟的Cu,Zn-SOD更容易形成有害的多聚體。鋅離子插入后,SOD1構象發生變化,形成了適合Cu-CCS復合體結合的狀態。CCS結構域III通過靜電識別捕獲Cu1+并和Cys殘基連接。之后CCS構象轉變,提高了和SOD1之間的互相作用。接下來Cu-CCS和SOD1形成了二聚體復合物,氧氣攻擊被CCS-SOD1復合物捕獲的Cu1+,伴隨氧化還原反應的發生Cu1+插入到SOD1當中,氧氣的存在還促進了硫醇基的氧化,最后引起SOD1中Cys57和CCS中與Cu1+離子連接的Cys229分子間二硫鍵的形成。Cu1+進入SOD1金屬位點后誘導Cys殘基周圍分子構象的改變,促進了分子間二硫氧化物到分子內的二硫氧化物的轉變。經過快速重排CSD1分子內二硫鍵形成,然后活性酶分子被釋放[13-14](圖1)。endprint
迄今為止,所有檢測的Cu,Zn-SOD每個亞基都含有一個保守的二硫鍵,二硫鍵的形成過程本來很慢,Cu-CCS復合體的結合加速了這一過程[13]。一旦形成,二硫鍵能保持很高的穩定性,甚至在細胞質中存在大量還原劑的情況下也不會發生斷裂[15]。在SOD1成熟過程中,如果銅離子插入之前就形成二硫鍵的話,酶就不能被Cu-CCS激活,保守的二硫鍵在CCS協助下為銅離子正確插入金屬活性位點提供支持并引導底物進入酶活性中心,對SOD1的激活和催化起關鍵作用[16]。但在真核細胞中,還原環境下的二硫鍵是如何形成且能保持高穩定性以及其他功能還不清楚,活性SOD1和CCS晶體顯示出的分子間的二硫鉸鏈作用是否是結晶化的結果也不得而知。除了二硫鍵形成之外,初期SOD1多肽必需經過3種其他的修飾,即銅、鋅離子的獲得和二聚化。每種修飾過程都會使酶發生嚴格的構象改變,決定了酶分子的最終形成。雖然內質網有專門的機制來氧化蛋白質折疊,很多證據表明SOD1并不是在內質網上折疊形成的[17]。當CCS過量表達時,會加快SOD1形成有害的多聚體,在人體內會導致肌萎縮側索硬化癥的發生[18-19]。
1.3 不依賴CCS的CSD激活途徑
在早期的大部分研究中,CCS突變菌株中的Cu,Zn-SOD由于缺乏銅離子和分子內二硫鍵而失去活性,所以CCS一直被認為是激活Cu,Zn-SOD的唯一途徑。然而,2000年Wong[20]發現一只CCS變異的白鼠體內依然存在少量的Cu,Zn-SOD活性。此外,線蟲CSD的激活就完全不需要CCS[21],不依賴CCS的激活途徑在老鼠、擬南芥和蜘蛛中陸續被發現,且適用于酵母表達體系[22],由此證明了CCS并不是唯一的CSD激活途徑。
目前對不依賴CCS激活途徑機制還不太清楚,但可以確定,一個未知因子和谷胱甘肽(GSH)一起參與到此途徑當中[23]。由此提出了兩種模型(圖2)。第一種模型:銅離子從Cu-GSH復合物傳遞到Cu,Zn-SOD,中間需要未知因子參與,未知因子起蛋白質支架的作用,提供Cu,Zn-SOD和Cu-GSH結合的平臺。第二種模型:銅離子從Cu-GSH傳遞到未知因子,然后再通過未知因子傳遞到Cu,Zn-SOD,這里的未知因子起銅離子的傳遞作用,并可以建立銅離子和Cu,Zn-SOD的連接[24]。不管是哪種模型,Cu,Zn-SOD和未知因子間的相互作用都是非常重要的。人類Cu,Zn-SOD C-末端144位的pro被推測是Cu-GSH和Cu,Zn-SOD的連接位點[25],由此推測第一種模型的可能性更大。
1.4 兩種激活途徑之間的關系
迄今為止,Cu,Zn-SOD的兩條激活途徑均已被證實。這兩條激活途徑的不同點在于:首先依賴CCS激活的Cu,Zn-SOD第144位上有一個Pro,這個空間構象阻止了5.5 處兩個Cys分子內二硫鍵的形成,而Cu-CCS的存在可以克服這一不利因素;其次依賴CCS激活途徑需要分子氧參與,不需要CCS的激活途徑,卻可以在含氧量很低乃至無氧條件下激活Cu,Zn-SOD[13-15]。研究發現,在酵母細胞中,Cu,Zn-SOD的二硫鍵是被Cu-CCS復合體氧化生成的[13],但在不依賴CCS激活途徑的線蟲中,二硫鍵卻能一直保持氧化狀態[15]。因此,如果細胞處于還原環境且Cu,Zn-SOD二硫鍵氧化趨勢很低時,就可能需要CCS的協助。
擬南芥細胞3種Cu,Zn-SOD對激活途徑有不同的偏好,主要取決于其所處的亞細胞環境,細胞質中的CSD1,有64%依賴CCS激活,36%不依賴CCS;葉綠體中的CSD2完全依賴于CCS才能被激活;過氧化物酶體中的CSD3則完全不需要CCS的協助[23]。由此推測,真核生物根據自己的生境會選擇不同的Cu,Zn-SOD激活途徑,一些生物體必需依賴CCS,而另一些則不需要,但大多數真核生物都同時存在這兩種激活途徑,且發現以依賴CCS的激活途徑為主。
2 Cu,Zn-SOD調控機制
含銅蛋白如CSD1、CSD2、CCS、質體藍素等都能通過miRNA來調控,由啟動子結合蛋白SPL7誘導表達的miR398可以阻礙CSD1、CSD2和CCS mRNA的轉錄[26]。miR398不僅被環境中高濃度銅所抑制,還能被高濃度蔗糖所誘導[27]。在低銅環境下,SPL7通過誘導miR398從而抑制了Cu,Zn-SOD的生成,SPL7還可以激活鐵超氧化物歧化酶(Fe-SOD,FSD1)的表達,Cu,Zn-SOD的功能將會被FSD1所取代并參與到植物氧化應激反應過程當中[6]。
2.1 microRNA應對環境脅迫的調控者
植物在環境脅迫條件下的生長發育會受到miRNA的調控,miRNA參與植物應激反應并能調節植物生長素和信號傳導等過程。在擬南芥中miR398編碼3個基因:miR398a、miR398b、miR398c。miR398b和miR398c序列相似,而miR398a 3'末端的核苷酸跟它們不同。miR398b和miR398c的表達量比miR398a高的多,且顯示出了更強的調控能力[28]。miR398的4個目標蛋白分別是:細胞質CSD1、葉綠體CSD2、線粒體細胞色素氧化酶亞基COX5b-1和銅分子伴侶CCS。通過調控這些靶基因,miR398參與了一系列的環境脅迫響應過程,其中包括氧化應激、鹽應激、脫落酸信號傳導以及細菌性病原體侵染后的應激過程等[29]。
高濃度的蔗糖通過抑制miR398的表達從而降低植物體內銅離子的積累量,這表明在植物細胞內蔗糖的信號轉導和含銅蛋白的積累有一定聯系,啟動子結合蛋白SPL7是誘導miR398的關鍵因子,但是這種通過蔗糖調控植物體內銅離子含量的響應過程并不完全由SPL7所控制[30]。除了降解轉錄產物之外,一些miRNA如miR398、miR172和miR156在正常情況下可以通過翻譯抑制來調控目標蛋白[31],但植物在逆境中是用這兩種調控機制還是是偏愛其中某一種尚不清楚。endprint
由于受到氧化脅迫,作為miRNA轉錄因子的SPL7失活可能是導致miRNA轉錄受到抑制的原因,miRNA含量會在幾個小時之內消失[32],核糖核酸外切酶也會在miRNA轉錄后將其降解,這些說明miRNA的脅迫響應可能在轉錄水平或轉錄后水平被調控。是由于脅迫誘導miRNA表達量下降還是由于其自身的降解能力下降導致脅迫響應,目前尚不清楚。研究脅迫響應miRNA與其目標基因表達量的關系將為深入了解miRNA網絡的調控過程提供依據。 2.2 轉錄因子SPL7通過誘導miR398調控SOD的表達
啟動子結合蛋白SPL7是一種保守的銅離子響應轉錄因子,和綠藻中的Crr1(Copper Response Regulator)屬于同一家族[33],研究發現,SPL7是Cu,Zn-SOD受銅離子影響的主要調控因子[6]。在擬南芥中,啟動子結合蛋白SPL7在銅離子缺乏時被激活表達,其SBP(for SQUAMOSA promoter binding protein,SBP) 結構域可以直接和miR398啟動子的GTAC序列結合并激活miR398的轉錄,但Fe-SOD啟動子也含有GTAC序列并能被SPL7激活[6,34]。miR398可以阻礙CSD1、CSD2和CCS的mRNA的轉錄[26-27],因此當銅離子成為限制因素時,SPL7將正調控FSD1而負調控CSD1和CSD2的表達。另外,SPL7也參與銅離子轉運蛋白和銅分子伴侶CCS的調控[26]。
但是,Dugas和Bartel[27]發現,將擬南芥移栽到含有蔗糖的培養基上會促進miR398的表達而造成CSD1和CSD2含量下降,因此在蔗糖存在下,CSD1和CSD2的轉錄不受銅離子含量的影響,但Fe-SOD表達量卻恒定,這表明蔗糖環境中,并不是通過SPL7而是其他未知因子來調控miR398的表達。Ren[30]等發現,在擬南芥細胞內,不管SPL7是否存在,蔗糖都能通過調控miRNAs的表達從而影響銅離子的積累量,如果將CSD1和CSD2 mRNA的miR398識別位點改變,這些突變mRNA甚至在miR398表達量很高的情況下都能成功轉錄,然而CSD1和CSD2的表達量卻依然受到銅缺乏的影響,這說明miR398并不是唯一影響CSD1和CSD2轉錄的因素[27-32]。不過這種現象還可以解釋為,CSD1和CSD2含量的積累需要銅離子起穩定作用,而在銅缺乏條件下傳遞銅離子的CCS蛋白會被miR398負調控。
3 討論
Cu,Zn-SOD的研究起步較早,對其蛋白結構、功能和分類的研究也比較深入。關于Cu,Zn-SOD的激活途徑和分子調控機理也是研究較多的領域之一,但尚有諸多未知的機理有待深入探究。首先,Cu,Zn-SOD與多種抗逆性有關,目前研究限于低溫、干旱、高鹽[35-37]等逆境,針對不同的逆境Cu/Zn-SOD的調控機理是否存在差異有待進一步系統研究。例如擬南芥Cu,Zn-SOD在蔗糖存在下除了SPL7以外,還存在一種未知蛋白在SPL7缺失的情況下調控植物體內的銅離子,而受銅離子影響的Cu,Zn-SOD是否也能被這種未知蛋白所調控需要進一步的驗證;另外,蔗糖脅迫中miR398也并不是唯一影響CSD1和CSD2轉錄的因素,說明逆境條件下CSD的調控存在多種可能。其次,Cu,Zn-SOD的激活途徑有兩條,不同的真核生物選擇這兩條激活途徑的機理尚不清晰,非CCS激活途徑研究較少,尚需大量的科學研究揭示該未知因子以及未知因子與谷胱甘肽的作用機理。這些基礎研究的數據將明晰植物的抗逆能力與Cu/Zn-SOD的關系,并利用這些結論創制具有良好的耐逆能力的植物新品系。
參考文獻
[1] Richardson D C, Bier C J, Richardson J S. Two crystal forms of bovine superoxide dismutase[J]. J Biol Chem. 1972, 247(19): 6 368-6 369.
[2] Tainer J A, Getzoff E D, Beem K M, et al. Determination and analysis of the 2 A-structure of copper, zinc superoxide dismutase[J]. J Mol Biol, 1982, 160(2): 181-217.
[3] Banci L, Bertini I, Ciofi B S, et al. Affinity 278 gradients drive copper to cellular destinations[J]. Nature,2010,465(7928): 645-648.
[4] Valentine S J, Gralla E B. Delivering copper inside yeast and human cells[J]. Science, 1997, 278(5339): 817-818.
[5] 林玉玲,賴鐘雄. 龍眼胚性愈傷組織Cu/Zn-SOD分子伴侶基因CCS的克隆及其在體胚發生過程中的表達分析[J].應用與環境生物學報,2012,18(3):351-358.
[6] Yamasaki H, Hayashi M, Fukazawa M. SQUAMOSA promoter binding protein-Like7 is a central regulator for copper homeostasis in Arabidopsis[[J]. The Plant Cell, 2009, 21(1): 347-361.
[7] Fukuhara R, Kageyama T. Structure, gene expression, and evolution of primate copper chaperone forsuperoxide dismutase[J]. Gene, 2013, 516(1):69-75.endprint
[8] Chu C C, Lee W C, Guo W Y, et al. A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis[J]. Plant Physiol, 2005, 139(1): 425-36.
[9] Trindade L M, Horvath B M, Bergervoet M J, et al. Isolation of a gene encoding a copper chaperone for the copper/zinc superoxide dismutase and characterization of its promoter in potato[J]. Plant Physiol, 2003, 133(2): 618-29.
[10] Abdel-Ghany S E, Burkhead J L, Gogolin K A. AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7[J]. FEBS Letters, 2005, 579(11): 2 307-2 312.
[11] Cohu C M, Abdel-Ghany S E, Gogolin Reyndds K A, et al. Copper delivery by the copper chaperone for chloroplast and cytosolic copper/zinc- superoxide dismutases: regulation and unexpected phenotypes in an Arabidopsis mutant[J]. Mol Plant, 2009, 2(6): 1 336-1 350.
[12] Brady G F, Galba′n s, Liu X W. Regulation of the copper chaperone CCS by XIAP-Mediated ubiquitination[J]. Mol. Cell. Biochem, 2010, 30(8): 1 923-1 936.
[13] Furukawa Y, Torres A S, O'Halloran T V. Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS[J]. J EMBO, 2004, 23(14): 2 872-2 881.
[14] Jeffry M, Leitch, Priscilla J, et al. The Right to choose: multiple pathways for activating copper,zinc superoxide dismutase[J]. Bio Chem, 2009, 284(37): 24 679-24 683.
[15] Leitch J M, Jensen L T, Bouldin S D, et al. Activation of Cu,Zn-superoxide dismutase in the absence of oxygen and the copper chaperone CCS[J]. Biol. Chem, 2009, 284(33): 21 863-21 871.
[16] Fisher C L, Cabelli D E, Tainer J A, et al. The role of arginine 143 in the electrostatics and mechanism of Cu,Zn superoxide dismutase: computational and experimental evaluation by mutational analysis[J] .Proteins, 1994, 19(1): 24-34.
[17] Lindenau J, Noack H, Possel H, et al. Cellular distribution of superoxide dismutases in the rat CNS[J]. Glia, 2000, 29(1): 25-34.
[18] Kim H K, Chung Y W, Chock P B, et al. Effect of CCS on the accumulation of FALS SOD1 mutant-containing aggregates and on mitochondrialtranslocation of SOD1 mutants: implication of a free radical hypothesis[J]. Arch Biochem Biophys, 2011, 509(2): 177-185.
[19] Reddehase S, Grumbt B, Neupert W, et al. The disulfide relay system of mitochondria is required for the biogenesis of mitochondrial Ccs1 and Sod1[J]. Mol Biol, 2009, 385(2): 331-338.
[20] Wong P C, Waggoner D, Subramaniam J R, et al. Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase[J]. Proc Natl Acad Sci USA, 2000, 97(16): 2 886-2 891.endprint
[21] Jensen L T, Culotta V C. Activation of CuZn superoxide dismutases from caenorhabditis elegans does not require the copper chaperone CCS[J]. Biol Chem, 2005, 280: 41 373-41 379.
[22] Sea K W, Sheng Y, Lelie H L, et al. Yeast copper-zinc superoxide dismutase can be activated in the absence of its copper chaperone[J]. Biol Inorg Chem, 2013, 18(8): 985-992.
[23] Huang C H, Kuo W Y, Weiss C, et al. Copper chaperone-dependent and -independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis[J]. Plant Physiol, 2012, 158(2):737-746.
[24] Huang C H, Kuo W Y, Jinn T L.Models for the mechanism for activating copper-zinc superoxide dismutase in the absence of the CCS Cu chaperone in Arabidopsis[J]. Plant Signal Behav, 2012, 7(3): 428-430.
[25] Carroll M C, Girouard J B, Ulloa J L, et al. Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone[J]. Proc Natl Acad Sci USA. 2004, 101(16): 5 964-5 969.
[26] Beauclair L, Yu A, Bouche N. microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis[J].The Plant Journal, 2010, 62(3): 454-462.
[27] Dugas D V,Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/ Zn superoxide dismutases[J]. Plant Mol. Biol, 2008, 67(4): 403-417.
[28] Yamasaki H, Abdel-Ghany S E, et al. Regulation of copper homeostasis by micro-RNA in Arabidopsis[J]. Biol. Chem, 2007, 282(22): 16 369-16 378.
[29] Jagadeeswaran G, Saini A, Sunkar R. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis[J]. Planta, 2009, 229(4): 1 009-1 014.
[30] Ren L, Tang G. Identification of sucrose-responsive microRNAs reveals sucrose-regulated copper accumulations in an SPL7-dependent and independent manner in Arabidopsis thaliana[J]. Plant Sci. 2012(187): 59-68.
[31] Brodersen P. Voinnet O. Revisiting the principles of microRNA target recognition and mode of action[J]. Nat Rev Mol Cell Biol, 2009, 10(2): 141-148.
[32] Sunkar R, Kapoor A, Zhu J K. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance[J]. Plant Cell, 2006, 18(8): 2 051-2 065.
[33] Kropat J, Tottey S, Birkenbihl RP, et al. A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element[J]. Proc Natl Acad Sci USA , 2005, 102(51): 18 730-18 735.
[34] Burkhead J L, Reynolds K A, et al. Copper homeostasis[J]. New Phytol, 2009(182): 799-816.
[35] Sales C R, Ribeiro R V, Silveira J A, et al. Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature[J]. Plant Physiol Biochem.2013(73): 326-336.
[36] 葉亞新,金 進,秦 粉,等. 低溫脅迫對小麥、玉米、蘿卜幼苗超氧化物歧化酶活性的影響[J]. 中國農學通報. 2009,25(23):244-248.
[37] 張海娜,李小娟,李存東,等. 過量表達小麥超氧化物歧化酶(SOD)基因對煙草耐鹽能力的影響[J]. 作物學報,2008,34(8):1 403-1 408.endprint
[21] Jensen L T, Culotta V C. Activation of CuZn superoxide dismutases from caenorhabditis elegans does not require the copper chaperone CCS[J]. Biol Chem, 2005, 280: 41 373-41 379.
[22] Sea K W, Sheng Y, Lelie H L, et al. Yeast copper-zinc superoxide dismutase can be activated in the absence of its copper chaperone[J]. Biol Inorg Chem, 2013, 18(8): 985-992.
[23] Huang C H, Kuo W Y, Weiss C, et al. Copper chaperone-dependent and -independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis[J]. Plant Physiol, 2012, 158(2):737-746.
[24] Huang C H, Kuo W Y, Jinn T L.Models for the mechanism for activating copper-zinc superoxide dismutase in the absence of the CCS Cu chaperone in Arabidopsis[J]. Plant Signal Behav, 2012, 7(3): 428-430.
[25] Carroll M C, Girouard J B, Ulloa J L, et al. Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone[J]. Proc Natl Acad Sci USA. 2004, 101(16): 5 964-5 969.
[26] Beauclair L, Yu A, Bouche N. microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis[J].The Plant Journal, 2010, 62(3): 454-462.
[27] Dugas D V,Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/ Zn superoxide dismutases[J]. Plant Mol. Biol, 2008, 67(4): 403-417.
[28] Yamasaki H, Abdel-Ghany S E, et al. Regulation of copper homeostasis by micro-RNA in Arabidopsis[J]. Biol. Chem, 2007, 282(22): 16 369-16 378.
[29] Jagadeeswaran G, Saini A, Sunkar R. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis[J]. Planta, 2009, 229(4): 1 009-1 014.
[30] Ren L, Tang G. Identification of sucrose-responsive microRNAs reveals sucrose-regulated copper accumulations in an SPL7-dependent and independent manner in Arabidopsis thaliana[J]. Plant Sci. 2012(187): 59-68.
[31] Brodersen P. Voinnet O. Revisiting the principles of microRNA target recognition and mode of action[J]. Nat Rev Mol Cell Biol, 2009, 10(2): 141-148.
[32] Sunkar R, Kapoor A, Zhu J K. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance[J]. Plant Cell, 2006, 18(8): 2 051-2 065.
[33] Kropat J, Tottey S, Birkenbihl RP, et al. A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element[J]. Proc Natl Acad Sci USA , 2005, 102(51): 18 730-18 735.
[34] Burkhead J L, Reynolds K A, et al. Copper homeostasis[J]. New Phytol, 2009(182): 799-816.
[35] Sales C R, Ribeiro R V, Silveira J A, et al. Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature[J]. Plant Physiol Biochem.2013(73): 326-336.
[36] 葉亞新,金 進,秦 粉,等. 低溫脅迫對小麥、玉米、蘿卜幼苗超氧化物歧化酶活性的影響[J]. 中國農學通報. 2009,25(23):244-248.
[37] 張海娜,李小娟,李存東,等. 過量表達小麥超氧化物歧化酶(SOD)基因對煙草耐鹽能力的影響[J]. 作物學報,2008,34(8):1 403-1 408.endprint
[21] Jensen L T, Culotta V C. Activation of CuZn superoxide dismutases from caenorhabditis elegans does not require the copper chaperone CCS[J]. Biol Chem, 2005, 280: 41 373-41 379.
[22] Sea K W, Sheng Y, Lelie H L, et al. Yeast copper-zinc superoxide dismutase can be activated in the absence of its copper chaperone[J]. Biol Inorg Chem, 2013, 18(8): 985-992.
[23] Huang C H, Kuo W Y, Weiss C, et al. Copper chaperone-dependent and -independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis[J]. Plant Physiol, 2012, 158(2):737-746.
[24] Huang C H, Kuo W Y, Jinn T L.Models for the mechanism for activating copper-zinc superoxide dismutase in the absence of the CCS Cu chaperone in Arabidopsis[J]. Plant Signal Behav, 2012, 7(3): 428-430.
[25] Carroll M C, Girouard J B, Ulloa J L, et al. Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone[J]. Proc Natl Acad Sci USA. 2004, 101(16): 5 964-5 969.
[26] Beauclair L, Yu A, Bouche N. microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis[J].The Plant Journal, 2010, 62(3): 454-462.
[27] Dugas D V,Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/ Zn superoxide dismutases[J]. Plant Mol. Biol, 2008, 67(4): 403-417.
[28] Yamasaki H, Abdel-Ghany S E, et al. Regulation of copper homeostasis by micro-RNA in Arabidopsis[J]. Biol. Chem, 2007, 282(22): 16 369-16 378.
[29] Jagadeeswaran G, Saini A, Sunkar R. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis[J]. Planta, 2009, 229(4): 1 009-1 014.
[30] Ren L, Tang G. Identification of sucrose-responsive microRNAs reveals sucrose-regulated copper accumulations in an SPL7-dependent and independent manner in Arabidopsis thaliana[J]. Plant Sci. 2012(187): 59-68.
[31] Brodersen P. Voinnet O. Revisiting the principles of microRNA target recognition and mode of action[J]. Nat Rev Mol Cell Biol, 2009, 10(2): 141-148.
[32] Sunkar R, Kapoor A, Zhu J K. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance[J]. Plant Cell, 2006, 18(8): 2 051-2 065.
[33] Kropat J, Tottey S, Birkenbihl RP, et al. A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element[J]. Proc Natl Acad Sci USA , 2005, 102(51): 18 730-18 735.
[34] Burkhead J L, Reynolds K A, et al. Copper homeostasis[J]. New Phytol, 2009(182): 799-816.
[35] Sales C R, Ribeiro R V, Silveira J A, et al. Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature[J]. Plant Physiol Biochem.2013(73): 326-336.
[36] 葉亞新,金 進,秦 粉,等. 低溫脅迫對小麥、玉米、蘿卜幼苗超氧化物歧化酶活性的影響[J]. 中國農學通報. 2009,25(23):244-248.
[37] 張海娜,李小娟,李存東,等. 過量表達小麥超氧化物歧化酶(SOD)基因對煙草耐鹽能力的影響[J]. 作物學報,2008,34(8):1 403-1 408.endprint