許 潔,劉明姬,呂顯瑞
(1.吉林化工學院 理學院,吉林 吉林132022;2.吉林大學 數(shù)學學院,長春130012)
廣義嚴格對角占優(yōu)矩陣又稱為非奇異H矩陣,在計算數(shù)學等領域應用廣泛,目前已取得了許多研究結果[1-8].本文在文獻[4]的基礎上,定義一類新的矩陣,利用該矩陣的性質,得到一組新的判定條件,進一步推廣了文獻[4-5]的結果.
設σ=(σ1,σ2,…,σk)是(1,2,…,k)的一個置換,對任意的i∈?記i∈Nσi,?=∪Nσi.進一步記:


其中i∈Nσi,j∈Nσj且σi≠σj,存在α∈ (0,1]};

其中i∈Nσi,j∈Nσj且σi≠σj,存在α∈ (0,1]}.定義1 設A=(aij)∈Cn×n,若存在α∈(0,1],使得

則稱A為對稱局部雙α對角占優(yōu)矩陣,記為A∈SLDD0(α),其中?i∈Nσi,j∈Nσj且σi≠σj.若式(1)不等號嚴格成立,則稱A為對稱局部雙α嚴格對角占優(yōu)矩陣,記為A∈SLDD(α).
定理1 設A=(aij)∈Cn×n∩SLDD(α),滿足aii≠0,J≠?.則A為廣義嚴格對角占優(yōu)矩陣.

下面討論Nk0≠?的情況.適當選取正數(shù)dk0,滿足:

式(2)左端比值當分母為零時記作+∞,易見dk0>1.構造正對角矩陣Dk0如下:



定理2 設A=(aij)∈Cn×n∩SLDD0(α)滿足aii≠0及≠?,且對每個i∈,都存在aii1ai1i2…aipt≠0,使得t∈,則A為廣義嚴格對角占優(yōu)矩陣.



若Hj的分母為零,則記Hj=+∞.由A∈SLDD0(α)知,max hi≤min Hj.由?J≠?知,存在i∈Nσi,j∈?\Nσi,d>1,使得max hi≤d≤min Hj.構造正對角陣D如下:



② 當j∈Nσj??\Nσi時,由Hj的定義有

再由d>1得


例1 設矩陣


[1]TIAN Guixian,HUANG Tingzhu,CUI Shuyu.Convergence of Generalized AOR Iterative Method for Linear Systems with Strictly Diagonally Dominant Matrices[J].Comput Appl Math,2008,213(1):240-247.
[2]侯進軍,李斌.H-矩陣的一組新判定 [J].應用數(shù)學學報,2008,31(2):266-270.(HOU Jinjun,LI Bin.Some New Conditions for Nonsingular H-Matrices[J].Acta Mathematica Applicatae Sinica,2008,31(2):266-270.)
[3]王健,徐仲,陸全.廣義嚴格對角占優(yōu)矩陣判定的新迭代準則 [J].應用數(shù)學學報,2010,33(6):961-966.(WANG Jian,XU Zhong,LU Quan.New Iterative Codes for Generalized Strictly Diagonally Dominant Matrices[J].Acta Mathematica Applicatae Sinica,2010,33(6):961-966.)
[4]孫玉祥,呂洪斌.廣義嚴格對角占優(yōu)矩陣與非奇異M-矩陣的判定 [J].廈門大學學報:自然科學版,2001,40(5):1011-1016.(SUN Yuxiang,Lü Hongbin.Criteria for Generalized Strictly Diagonally Matrices and Nonsingular M-Matrices[J].Journal of Xiamen University:Natural Science,2001,40(5):1011-1016.)
[5]逄明賢.局部雙對角占優(yōu)矩陣及其應用 [J].數(shù)學學報,1995,38(4):442-450.(PANG Mingxian.Locally Double-diagonally Dominant Matrix and Its Applications[J].Acta Mathematica Sinica,1995,38(4):442-450.)
[6]Berman A,Plemmons R J.Nonnegative Matrices in the Mathematical Sciences[M].New York:Academic Press,1979.
[7]周曉晶,許潔,孫玉祥.廣義對角占優(yōu)矩陣的一組判定條件 [J].數(shù)學的實踐與認識,2012,42(15):244-250.(ZHOU Xiaojing,XU Jie,SUN Yuxiang.Some Criteria for Generalized Strictly Diagonally Dominant Matrices[J].Mathematics in Practices and Theory,2012,42(15):244-250.)
[8]郭麗.非奇異 H-矩陣的判定 [J].吉林大學學報:理學版,2010,48(2):226-228.(GUO Li.Criteria for Nonsingular H-Matrices[J].Journal of Jilin University:Science Edition,2010,48(2):226-228.)