999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

泊松化圖像復原的交替最小化算法

2014-10-27 08:44:13劉新武??
經濟數學 2014年3期
關鍵詞:圖像復原

劉新武??

摘 要 為了快速地去除圖像中的泊松噪聲, 本文在傳統的交替方向算法基礎上, 結合松弛算法提出了一個改進的快速交替最小化算法. 與經典的數值算法相比,數值試驗表明提出的新算法不但能有效地實現泊松化圖像復原, 還能大幅度地提高數值計算的速率, 并顯著地減少電腦的CPU運行時間.

關鍵詞 圖像復原;泊松噪聲;全變差;交替最小化算法

中圖分類號 TP391 文獻標識碼 A

Alternating Minimization Algorithm

for Poissonian Image Restoration

LIU Xinwu

(School of Mathematics and Computational Science, Hunan University of Science

and Technology, Xiangtan, Hunan 411201,China)

Abstract To quickly remove Poisson noise, based on the traditional alternating direction method, this paper combined the relaxation method and proposed an improved alternating minimization algorithm. Compared with the classical numerical algorithm, numerical simulations demonstrate that the proposed strategy not only removes Poisson noise efficiently, but improves the speed of calculation substantially and reduces the computer CPU time noticeably.

Key words image restoration; Poisson noise; total variation; alternating minimization algorithm

1 引 言

圖像在形成、傳輸和存儲過程中, 不可避免地會受到噪聲的影響. 譬如, 在天文成像[1]和電子顯微鏡成像[2,3]中, 獲得的圖像就往往會受到泊松噪聲污染,并出現明顯的降質現象,因此圖像復原就顯得尤為重要. 目前,圖像復原技術已在天文學、醫學、刑偵、軍事以及金融學等領域得到了廣泛的應用. 例如,在商業和金融行業中,一個新興的融合信息科學、金融學和管理學的先進金融信息技術(如模式識別、人工智能等)已有效地應用于金融票據識別、金融票據影像處理及打印中,并成功地解決了一系列經濟領域中的熱點和難點問題.

4 結 論

本文研究了一個基于TV正則化模型的泊松化圖像復原問題. 為了提高數值計算的速率, 本文結合傳統的交替方向法和松弛算法, 提出了一個改進的交替最小化算法. 數值試驗表明, 新算法在泊松去噪中具有顯著的優越性和高效性.同時,該算法也必將在金融行業中的金融票據識別和票據影像處理中得到進一步的發展和應用.

參考文獻

[1] E BRATSOLIS, M SIGELLA. A spatial regularization method preserving local photometry for RichardsonLucy restoration [J]. Astronomy Astrophysics, 2001, 375(3): 1120-1128.

[2] N DAY, L BLANCFERAUD, C ZIMMER, et al. RichardsonLucy algorithm with total variation regularization for 3D confocal microscope deconvolution [J]. Microscopy Research and Technique, 2006, 69(4): 260-266.

[3] A KRYVANOS, J HESSER, G STEIDL. Nonlinear image restoration methods for marker extraction in 3D fluorescent microscopy[C]//Proceedings of SPIE, San Jose, CA, USA. Computational Imaging III, 2005, 5674: 432-443.

[4] T LE, R CHARTRAND, T ASAKI. A variational approach to constructing images corrupted by Poisson noise [J]. Journal of Mathematical Imaging and Vision, 2007, 27(3): 257-263.

[5] A SAWATZKY, C BRUNE, F WUBBELING, T KOSTERS, K SCHAFERS, M BURGER. Accurate EMTV algorithm in PET with low SNR[C]//IEEE Nuclear Science Symposium Conference Record, Dresden, Germany, 2008, 5133-5137.

[6] C BRUNE, A SAWATZKY, M BURGER. Primal and dual Bregman methods with application to optical nanoscopy [J]. International Journal of Computer Vision, 2011, 92(2): 211-229.

[7] M FIGUEIREDO, J BIOUCASDIAS. Restoration of Poissonian images using alternating direction optimization [J]. IEEE Transactions on Image Processing, 2010, 19(12): 3133-3145.

[8] S SETZER, G STEIDL, T TEUBER. Deblurring Poissonian images by split Bregman techniques [J]. Journal of Visual Communication and Image Representation, 2010, 21(3): 193-199.

[9] X LIU, L HUANG. Total bounded variationbased Poissonian images recovery by split Bregman iteration [J]. Mathematical Methods in the Applied Sciences, 2012, 35(5): 520-529.

[10]T F CHAN, P MULET. On the convergence of the lagged diffusivity fixed point method in total variation image restoration [J]. SIAM Journal on Numerical Analysis, 1999, 36(2): 354-367.

[11]C VOGEL, M OMAN. Iteration methods for total variation denoising [J]. SIAM Journal on Scientific Computing, 1996, 17(1): 227-238.

[12]A CHAMBOLLE. An algorithm for total variation minimization and application [J]. Journal of Mathematical Imaging and Vision, 2004, 20(1-2): 89-97.

[13]M K NG, L QI, Y YANG, Y HUANG. On semismooth Newtons methods for total variation minimization [J]. Journal of Mathematical Imaging and Vision, 2007, 27(3): 265-276.

[14]T GOLDSTEIN, S OSHER. The split Bregman algorithm for L1 regularized problems [J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 323-343.

[15]J F CAI, S OSHER, Z SHEN. Split Bregman methods and frame based image restoration [J]. Multiscale Modeling & Simulation, 2009, 8(2): 337-369.

[16]X LIU, L HUANG. Split Bregman iteration algorithm for total bounded variation regularization based image deblurring [J]. Journal of Mathematical Analysis and Applications, 2010, 372(2): 486-495.

[17]W YIN, S OSHER, D GOLDFARB, J DARBON. Bregman iterative algorithms for L1minimization with applications to compressed sensing [J]. SIAM Journal on Imaging Sciences, 2008, 1(1): 143-168.

[18]RQ JIA, H ZHAO, W ZHAO. Relaxation methods for image denoising based on difference schemes [J]. Multiscale Modeling & Simulation, 2011, 9(1): 355-372.

[7] M FIGUEIREDO, J BIOUCASDIAS. Restoration of Poissonian images using alternating direction optimization [J]. IEEE Transactions on Image Processing, 2010, 19(12): 3133-3145.

[8] S SETZER, G STEIDL, T TEUBER. Deblurring Poissonian images by split Bregman techniques [J]. Journal of Visual Communication and Image Representation, 2010, 21(3): 193-199.

[9] X LIU, L HUANG. Total bounded variationbased Poissonian images recovery by split Bregman iteration [J]. Mathematical Methods in the Applied Sciences, 2012, 35(5): 520-529.

[10]T F CHAN, P MULET. On the convergence of the lagged diffusivity fixed point method in total variation image restoration [J]. SIAM Journal on Numerical Analysis, 1999, 36(2): 354-367.

[11]C VOGEL, M OMAN. Iteration methods for total variation denoising [J]. SIAM Journal on Scientific Computing, 1996, 17(1): 227-238.

[12]A CHAMBOLLE. An algorithm for total variation minimization and application [J]. Journal of Mathematical Imaging and Vision, 2004, 20(1-2): 89-97.

[13]M K NG, L QI, Y YANG, Y HUANG. On semismooth Newtons methods for total variation minimization [J]. Journal of Mathematical Imaging and Vision, 2007, 27(3): 265-276.

[14]T GOLDSTEIN, S OSHER. The split Bregman algorithm for L1 regularized problems [J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 323-343.

[15]J F CAI, S OSHER, Z SHEN. Split Bregman methods and frame based image restoration [J]. Multiscale Modeling & Simulation, 2009, 8(2): 337-369.

[16]X LIU, L HUANG. Split Bregman iteration algorithm for total bounded variation regularization based image deblurring [J]. Journal of Mathematical Analysis and Applications, 2010, 372(2): 486-495.

[17]W YIN, S OSHER, D GOLDFARB, J DARBON. Bregman iterative algorithms for L1minimization with applications to compressed sensing [J]. SIAM Journal on Imaging Sciences, 2008, 1(1): 143-168.

[18]RQ JIA, H ZHAO, W ZHAO. Relaxation methods for image denoising based on difference schemes [J]. Multiscale Modeling & Simulation, 2011, 9(1): 355-372.

[7] M FIGUEIREDO, J BIOUCASDIAS. Restoration of Poissonian images using alternating direction optimization [J]. IEEE Transactions on Image Processing, 2010, 19(12): 3133-3145.

[8] S SETZER, G STEIDL, T TEUBER. Deblurring Poissonian images by split Bregman techniques [J]. Journal of Visual Communication and Image Representation, 2010, 21(3): 193-199.

[9] X LIU, L HUANG. Total bounded variationbased Poissonian images recovery by split Bregman iteration [J]. Mathematical Methods in the Applied Sciences, 2012, 35(5): 520-529.

[10]T F CHAN, P MULET. On the convergence of the lagged diffusivity fixed point method in total variation image restoration [J]. SIAM Journal on Numerical Analysis, 1999, 36(2): 354-367.

[11]C VOGEL, M OMAN. Iteration methods for total variation denoising [J]. SIAM Journal on Scientific Computing, 1996, 17(1): 227-238.

[12]A CHAMBOLLE. An algorithm for total variation minimization and application [J]. Journal of Mathematical Imaging and Vision, 2004, 20(1-2): 89-97.

[13]M K NG, L QI, Y YANG, Y HUANG. On semismooth Newtons methods for total variation minimization [J]. Journal of Mathematical Imaging and Vision, 2007, 27(3): 265-276.

[14]T GOLDSTEIN, S OSHER. The split Bregman algorithm for L1 regularized problems [J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 323-343.

[15]J F CAI, S OSHER, Z SHEN. Split Bregman methods and frame based image restoration [J]. Multiscale Modeling & Simulation, 2009, 8(2): 337-369.

[16]X LIU, L HUANG. Split Bregman iteration algorithm for total bounded variation regularization based image deblurring [J]. Journal of Mathematical Analysis and Applications, 2010, 372(2): 486-495.

[17]W YIN, S OSHER, D GOLDFARB, J DARBON. Bregman iterative algorithms for L1minimization with applications to compressed sensing [J]. SIAM Journal on Imaging Sciences, 2008, 1(1): 143-168.

[18]RQ JIA, H ZHAO, W ZHAO. Relaxation methods for image denoising based on difference schemes [J]. Multiscale Modeling & Simulation, 2011, 9(1): 355-372.

猜你喜歡
圖像復原
雙背景光自適應融合與透射圖精準估計水下圖像復原
基于MTF的實踐九號衛星圖像復原方法研究
數字圖像復原專利技術綜述
大科技·C版(2019年1期)2019-09-10 14:45:17
虛擬現實的圖像復原真實性優化仿真研究
數碼世界(2017年12期)2017-12-28 15:45:13
一種基于顯著性邊緣的運動模糊圖像復原方法
圖像復原的一種新的加速動量梯度投影法
科技資訊(2016年27期)2017-03-01 18:23:16
基于月球觀測的FY-2G中波紅外波段在軌調制傳遞函數評價與圖像復原
基于MTFC的遙感圖像復原方法
模糊圖像復原的高階全變差正則化模型構建
一種自適應正則化技術的圖像復原方法
主站蜘蛛池模板: 人妻少妇久久久久久97人妻| 亚洲国产中文欧美在线人成大黄瓜 | 99久久99视频| 亚洲男人在线| 亚洲 成人国产| 激情影院内射美女| 国产精品天干天干在线观看| 无码福利视频| 国产精品片在线观看手机版| AV不卡在线永久免费观看| 午夜丁香婷婷| 久久国产精品影院| 一级毛片免费不卡在线| 欧美成a人片在线观看| 婷婷综合在线观看丁香| 国产丝袜91| 日本人真淫视频一区二区三区| 国产在线观看精品| 成人国产精品网站在线看| 米奇精品一区二区三区| 国产嫖妓91东北老熟女久久一| 极品尤物av美乳在线观看| 九九这里只有精品视频| 青青热久麻豆精品视频在线观看| 国产精品手机在线播放| 免费一级无码在线网站 | 国产午夜不卡| 国产又粗又爽视频| 一级毛片基地| 亚洲国产日韩视频观看| 精品国产乱码久久久久久一区二区| 亚洲中文字幕精品| 国语少妇高潮| 91亚洲免费视频| 日韩成人在线视频| 国产黄在线观看| 国产成人av一区二区三区| 伊人福利视频| 中文字幕伦视频| 97在线公开视频| 性欧美久久| 男人天堂亚洲天堂| 欧美人人干| 国产精品专区第1页| 成年网址网站在线观看| 欧美成人精品高清在线下载| 久久www视频| 91九色最新地址| 免费国产不卡午夜福在线观看| 久久精品只有这里有| 手机在线国产精品| 亚洲欧美日韩中文字幕一区二区三区| 性视频一区| 国内精品自在自线视频香蕉| 欧美特级AAAAAA视频免费观看| 亚洲九九视频| 免费在线不卡视频| 亚洲性一区| 国产波多野结衣中文在线播放 | 国产一级二级在线观看| 国产一级妓女av网站| 精品一区二区三区自慰喷水| 国产精品国产三级国产专业不 | 高清久久精品亚洲日韩Av| 最新亚洲人成网站在线观看| 在线视频亚洲欧美| 久久男人视频| 国产精品第| 一级爆乳无码av| 污视频日本| 米奇精品一区二区三区| a级毛片在线免费| 亚洲国产91人成在线| 亚洲网综合| 亚洲国产成人自拍| 中文字幕在线看视频一区二区三区| 中文字幕自拍偷拍| 久久久91人妻无码精品蜜桃HD| 久草青青在线视频| www.99精品视频在线播放| 无码福利日韩神码福利片| 国产精品任我爽爆在线播放6080|