姜嵐+李爭寧
摘要:指出了過渡金屬催化醛酮的親核加成反應是一種重要的形成碳碳鍵的反應。綜述了在過渡金屬-NHC配合物催化下,有機硼酸和醛酮的親核加成反應。包括有機硼酸和醛的1,2-加成反應,有機硼酸和α,β-不飽和酮的1,4-加成反應。
關鍵詞:過渡金屬;NHC;有機硼酸;醛酮;催化反應
中圖分類號:O653.3文獻標識碼:A文章編號:1674—9944(2014)09—0263—03
1引言
在過渡金屬催化下,醛、酮等羰基化合物與親核試劑的加成反應是一類經典的形成碳碳鍵的反應[1]。盡管有許多高活性的有機鎂、有機鋰、有機鋅、有機銅、有機錫等金屬有機試劑可以與醛、酮反應,但是因為其對空氣和水汽敏感、制備和操作繁瑣、對底物官能團兼容性差、毒性高等原因,在許多合成環境中受到制約。自從1998年Miyaura小組報道了銠催化的有機硼酸與芳醛的加成反應以來,這類反應就一直為研究者所關注[2]。主要因為有機硼酸對水和空氣穩定,對各類官能團有較好的容忍性,毒性低而且易操作等優點。
在傳統的過渡金屬催化反應中,一般采用有機膦為配體。1991年,Arduengo小組首次合成并分離出了游離的N-雜環卡賓化合物(NHC),NHC就以其獨特的分子結構和電子效應引起了研究者極大的興趣。NHC化合物是強σ-電子供體,與金屬絡合時,可以形成穩定的C-M鍵,在催化反應中不需要加入過量的配體;結構多變易修飾;其前體咪唑鹽對空氣、水和熱穩定,易操作和儲存等。近年來,NHC作為一類新型配體,在過渡金屬催化的有機反應中發揮越來越重要的作用。本文綜述了近十年過渡金屬-NHC催化的有機硼酸和醛酮的加成反應。包括有機硼酸與醛的1,2-加成反應,有機硼酸與共軛烯酮的1,4-加成反應。
2過渡金屬-NHC催化有機硼酸和醛的1,2-加成反應
2001年,Fürstner研究小組首次報道了銠催化的芳基硼酸與芳醛的加成反應(反應1)[3]。反應在強堿作用下,原位條件3mol% RhCl3·3H2O與3mol%咪唑鹽1絡合,催化苯基硼酸與對甲氧基苯甲醛的親核加成反應,反應0.2h收率達93%。研究發現,NHC的前體咪唑鹽1側鏈N原子連有芳基取代基比連有脂肪族取代基催化反應產率更高,所需反應時間更短。反應需要堿在原位下對咪唑鹽脫質子,因此采用叔丁醇鉀等強堿(85%,1h)比三乙胺等弱堿(11%,8h)的效果更好。催化劑有很高的催化活性,對底物醛和取代芳基硼酸的官能團兼容性很好,取代芳醛或脂肪醛均可順利的發生反應。當底物中同時含有醛羰基和酮羰基時,會選擇性的與醛羰基進行加成。當芳基硼酸連有強吸電基團時,反應不進行,這主要是因為親核性降低會使催化劑的轉金屬化過程更加困難。
Gois等也采用Rh2(OAc)4/咪唑(啉)鹽原位條件下,在DME/H2O中90℃下催化反應1,并發現了與Fürstner研究小組相似的結果[4]。當使用咪唑鹽1為配體時,反應0.5h產率94%。但是咪唑鹽側鏈N原子連有位阻過大的基團時,反應時間會延長,甚至不反應。改換溶劑為質子型溶劑叔戊醇,Rh2(pfb)4/咪唑鹽1原位催化下,反應條件更加溫和,40℃時反應0.5h產率可達90%。
手性醇特別是二芳基手性醇類化合物是許多天然藥物、生物活性物質的重要片段結構[5]。以手性NHC化合物為配體催化芳基硼酸與芳醛的加成反應是合成二芳基手性醇化合物的重要方法。Miyaura小組曾以手性膦配體(S)-MeO-MOP/[Rh(acac)(CH2=CH2)]催化α-萘醛與苯基硼酸反應,反應36h得到(R)-α-萘基-苯基甲醇,收率78%,ee值為41%(反應2)[2]。2010年,Ma等人合成了一系列基于面手性[2,2]環仿為骨架的新型咪唑三氟甲磺酸鹽2和鹽酸鹽和3。研究表明以[Rh(OAc)2]2為金屬源,咪唑鹽2a為配體,原位下催化反應2,反應2h收率達99%,但是ee值沒有明顯的提升,而且陰離子的類型會顯著影響收率和ee值[6]。最近,該小組在原合成咪唑鹽方法基礎上,對咪唑鹽2的結構改進,將R基變為烷氧基,使得產物的對映體選擇性進一步提高(52%)[7]。
zdemir小組報道了以溶膠-凝膠法制備二氧化硅負載的RhCl(COD)(NHC)配合物4,催化取代苯基硼酸與取代苯甲醛的親核加成反應[8]。以2,4,6-三甲氧基苯甲醛為底物,反應2h,收率最高達82%。催化劑循環使用4次,催化活性沒有明顯降低。
Luo等人將2,4,6-三甲基苯基咪唑與交聯的氯甲基聚苯乙烯反應,與[Rh(COD)Cl]2絡合合成聚合物負載的Rh-NHC配合物5[9]。研究發現溶劑中水的含量對苯基硼酸和取代苯甲醛反應的收率有很大影響,作者認為這可能是因為水使聚合物發生溶脹,溶脹的體積越大,會使聚合物表面負載有更多的催化劑基團的原因。底物中苯甲醛具有硝基、氰基等吸電基團有利于反應的進行,縮短反應時間。
與大量的銠催化芳醛加成反應的研究成果相比,由于鈀催化該反應的活性較低,研究相對比較少。Shi小組實現了以具有C2對稱性的Pd-苯并咪唑型配合物6催化不對稱合成二芳基甲醇[10]。在4分子篩存在下,KOH為堿,收率最高達99%,得到了中等的ee值(65%)。但是研究發現該反應適用于缺電子芳醛,當底物為富電子芳醛時,產物的立體選擇性急劇下降為0~1%ee。
2008年,Kuriyama和Shirai小組開發了一類苯基硫醚型咪唑鹽7,原位條件下,以堿CsF對咪唑鹽7脫質子,與[Pd(allyl)Cl]2形成配合物催化反應3[11]。與典型的咪唑鹽SIPr·HCl相比,7表現出了更高的催化活性。包括芳基硼酸、烯基硼酸、芳香雜環硼酸等在內的硼酸均可高產率的完成反應,苯基硼酸連有吸電基團或供電基團時,產物收率都很高。大位阻的2,6-二甲氧基苯甲醛與苯基硼酸反應3h收率達到98%。隨后該小組報道了以更加穩定的芳基三氟硼酸鉀替代芳基硼酸與芳醛反應,也得到了較高的收率[12]。2012年,Kuriyama和Onomura小組以環境友好的、更加低廉的H2O替代1,4-二氧六環為溶劑,以CsCO3為堿,咪唑鹽7/[Pd(allyl)Cl]2原位下催化取代芳醛或脂肪醛與取代芳基硼酸的反應,得到了中等到優異的收率[13]。催化劑有較好的選擇性,在100℃下4-氯苯甲醛與苯基硼酸反應未發現有Suzuki偶聯產物生成。endprint
3過渡金屬-NHC催化有機硼酸和α,β-不飽和酮的1,4-加成反應
2008年,Shi小組首次報道了Pd-軸對稱手性雙齒NHC配合物8不對稱催化苯基硼酸和環己(戊)烯酮的1,4-加成反應,是Pd催化此類反應的突破性進展[14]。該反應條件溫和,可在室溫下進行。環己烯酮無論與富電子或缺電子的芳基硼酸反應,都收到了很高的收率和對映體選擇性,但是環戊烯酮與苯基硼酸只得到了中等的收率和ee值。
2011年,Nolan等人報道了富電子NHC-Rh配合物[Rh(COD)(ICy)(OH)]9催化五元環至七元環共軛烯酮與芳基硼酸反應(反應4),在微波條件下反應30min,最高收率99%[15]。研究表明,該催化劑活性很高,當催化劑含量為0.001mol%時,反應12h可轉化完全,TON值最高可達100000,TOF 值最高為6600h-1。
銠催化的有機硼酸與α,β-不飽和酮的共軛加成反應,一般需要有少量水存在才能進行。主要有兩個原因,一是水可加速烯醇中間體的水解過程,二是促進有機硼化合物的轉金屬過程[16]。2012年,Yus小組合成咪唑環側鏈含有羥基官能團的Rh-NHC配合物10,可在無水溶劑中催化開鏈、環狀α,β-不飽和酮與芳基硼酸的1,4-加成反應(反應5,6)[17]。如果采用與配合物10骨架相同的、不含羥基的配合物11催化反應,則反應根本不進行,作者認為NHC配體中的醇羥基可以起到水的作用。
4結語
自從1995年,Herrmann首次報道N-雜環卡賓的過渡金屬配合物在催化反應中的應用以來,N-雜環卡賓-金屬配合物在均相和多相催化方面一直是人們研究的熱點內容。發現一個高收率、高立體選擇性的反應需要配體、底物、反應條件等因素的完美結合。相信隨著研究的進一步拓展,將會不斷發現更加高效、適用性更廣、成本更加低廉的催化劑。
2014年9月綠色科技第9期參考文獻:
[1] Suzuki A.Organoborates in new synthetic reactions[J].Accounts of Chemical Research,1982,15(6):178~184.
[2] Sakai M,Ueda M,Miyaura N.Rhodium-catalyzed addition of organoboronic acids to aldehydes[J].Angewandte Chemie International Edition,1998,37(23):3279~3281.
[3] Fürstner A,Krause H.Practical method for the rhodium-catalyzed addition of aryl-and alkenylboronic acids to aldehydes[J].Advanced Synthesis & Catalysis,2001,343(4):343~350.
[4] Gois P M P,Trindade A F,Veiros L F,André V,Duarte M T,Afonso C A M,Caddick S,Cloke F G N.Tuning the reactivity of dirhodium(II) complexes with axial N-heterocyclic carbene ligands:the arylation of aldehydes[J].Angewandte Chemie International Edition,2007,46(30):5750~5753.
[5] Schmidt F,Stemmler R T,Rudolph J,Bolm C.Catalytic asymmetric approaches towards enantiomerically enriched diarylmethanols and diarylmethylamines[J].Chemical Society Reviews,2006,35:454~470.
[6] Ma Q,Ma Y,Liu X,Duan W,Qu B,Song C.Planar chiral imidazolium salts based on [2.2]paracyclophane in the asymmetric rhodium-catalyzed 1,2-addition of arylboronic acids to aldehydes[J].Tetrahedron:Asymmetry,2010,21(3):292~298.
[7] Duan W,Ma Y,Qu B,Zhao L,Chen J,Song C.Synthesis of new alkoxy/sulfonate-substituted carbene precursors derived from [2.2]paracyclophane and their application in the asymmetric arylation of aldehydes[J].Tetrahedron:Asymmetry,2012,23(18-19):1369~1375.
[8] zdemir I,Gürbüz N,Se?kin T,?etinkaya B.Synthesis of silica-supported rhodium carbine complex as efficient catalyst for the addition of phenylboronic acid to aldehydes[J].Applied Organometallic Chemistry,2005,19(5):633~638.endprint
[9] Yan C,Zeng X,Zhang W,Luo M.Polymer-supported N-heterocyclic carbene-rhodium complex catalyst for the addition of arylboronic acids to aldehydes[J].Journal of Organometallic Chemistry,2006,691(15):3391~3396.
[10] Zhang R,Xu Q,Zhang X,Zhang T,Shi M.Axially chiral C2-symmetric N-heterocyclic carbene (NHC) palladium complexes-catalyzed asymmetric arylation of aldehydes with arylboronic acids[J].Tetrahedron:Asymmetry,2010,21(15):1928~1935.
[11] Kuriyama M,Shimazawa R,Shirai R.Efficient 1,2-addition of aryl-and alkenylboronic acids to aldehydes catalyzed by the palladium/thioether-imidazolinium chloride system[J].The Journal of Organic Chemistry,2008,73(4):1597~1600.
[12] Kuriyama M,Shimazawa R,Enomoto T,Shirai R.Palladium-catalyzed 1,2-addition of potassium aryl-and alkenyltrifluoroborates to aldehydes using thioether-imidazolinium carbene ligands[J].The Journal of Organic Chemistry,2008,73(17):6939~6942.
[13] Kuriyama M,Ishiyama N,Shimazawa R,Onomura O.Palladium-imidazolinium carbene-catalyzed arylation of aldehydes with arylboronic acids in water[J].Tetrahedron,2010,66(34):6814~6819.
[14] Zhang T,Shi M.Chiral bidentate bis(N-heterocyclic carbene)-based palladium complexes bearing carboxylate ligands:highly effective catalysts for the enantioselective conjugate addition of arylboronic acids to cyclic enones[J].Chemistry-A European Journal,2008,14(12):3759~3764.
[15] Truscott B J,Fortman G C,Slawin A M Z,Nolan S P.Well-defined [Rh(NHC)(OH)] complexes enabling the conjugate addition of arylboronic acids to α,β-unsaturated ketones[J].Organic & Biomolecular Chemistry,2011,9:7038~7041.
[16] (a) Hayashi T,Takahashi M,Takaya Y,Ogasawara M.Catalytic cycle of rhodium-catalyzed asymmetric 1,4-addition of organoboronic acids.arylrhodium,oxa-π-allylrhodium,and hydroxorhodium intermediates[J].Journal of the American Chemical Society,2002,124(18):5052~5058.(b) Fagnou K,Lautens M.Rhodium-catalyzed carbon?carbon bond forming reactions of organometallic compounds[J].Chemical Reviews,2003,103(1):169~196.
[17] Penafiel I,Pastor I M,Yus M,Esteruelas M A,Oliva?n M.Preparation,hydrogen bonds,and catalytic activity in metalpromoted addition of arylboronic acids to enones of a rhodium complex containing an NHC ligand with an alcohol function[J].Organometallics,2012,31(17):6154~6161.endprint
[9] Yan C,Zeng X,Zhang W,Luo M.Polymer-supported N-heterocyclic carbene-rhodium complex catalyst for the addition of arylboronic acids to aldehydes[J].Journal of Organometallic Chemistry,2006,691(15):3391~3396.
[10] Zhang R,Xu Q,Zhang X,Zhang T,Shi M.Axially chiral C2-symmetric N-heterocyclic carbene (NHC) palladium complexes-catalyzed asymmetric arylation of aldehydes with arylboronic acids[J].Tetrahedron:Asymmetry,2010,21(15):1928~1935.
[11] Kuriyama M,Shimazawa R,Shirai R.Efficient 1,2-addition of aryl-and alkenylboronic acids to aldehydes catalyzed by the palladium/thioether-imidazolinium chloride system[J].The Journal of Organic Chemistry,2008,73(4):1597~1600.
[12] Kuriyama M,Shimazawa R,Enomoto T,Shirai R.Palladium-catalyzed 1,2-addition of potassium aryl-and alkenyltrifluoroborates to aldehydes using thioether-imidazolinium carbene ligands[J].The Journal of Organic Chemistry,2008,73(17):6939~6942.
[13] Kuriyama M,Ishiyama N,Shimazawa R,Onomura O.Palladium-imidazolinium carbene-catalyzed arylation of aldehydes with arylboronic acids in water[J].Tetrahedron,2010,66(34):6814~6819.
[14] Zhang T,Shi M.Chiral bidentate bis(N-heterocyclic carbene)-based palladium complexes bearing carboxylate ligands:highly effective catalysts for the enantioselective conjugate addition of arylboronic acids to cyclic enones[J].Chemistry-A European Journal,2008,14(12):3759~3764.
[15] Truscott B J,Fortman G C,Slawin A M Z,Nolan S P.Well-defined [Rh(NHC)(OH)] complexes enabling the conjugate addition of arylboronic acids to α,β-unsaturated ketones[J].Organic & Biomolecular Chemistry,2011,9:7038~7041.
[16] (a) Hayashi T,Takahashi M,Takaya Y,Ogasawara M.Catalytic cycle of rhodium-catalyzed asymmetric 1,4-addition of organoboronic acids.arylrhodium,oxa-π-allylrhodium,and hydroxorhodium intermediates[J].Journal of the American Chemical Society,2002,124(18):5052~5058.(b) Fagnou K,Lautens M.Rhodium-catalyzed carbon?carbon bond forming reactions of organometallic compounds[J].Chemical Reviews,2003,103(1):169~196.
[17] Penafiel I,Pastor I M,Yus M,Esteruelas M A,Oliva?n M.Preparation,hydrogen bonds,and catalytic activity in metalpromoted addition of arylboronic acids to enones of a rhodium complex containing an NHC ligand with an alcohol function[J].Organometallics,2012,31(17):6154~6161.endprint
[9] Yan C,Zeng X,Zhang W,Luo M.Polymer-supported N-heterocyclic carbene-rhodium complex catalyst for the addition of arylboronic acids to aldehydes[J].Journal of Organometallic Chemistry,2006,691(15):3391~3396.
[10] Zhang R,Xu Q,Zhang X,Zhang T,Shi M.Axially chiral C2-symmetric N-heterocyclic carbene (NHC) palladium complexes-catalyzed asymmetric arylation of aldehydes with arylboronic acids[J].Tetrahedron:Asymmetry,2010,21(15):1928~1935.
[11] Kuriyama M,Shimazawa R,Shirai R.Efficient 1,2-addition of aryl-and alkenylboronic acids to aldehydes catalyzed by the palladium/thioether-imidazolinium chloride system[J].The Journal of Organic Chemistry,2008,73(4):1597~1600.
[12] Kuriyama M,Shimazawa R,Enomoto T,Shirai R.Palladium-catalyzed 1,2-addition of potassium aryl-and alkenyltrifluoroborates to aldehydes using thioether-imidazolinium carbene ligands[J].The Journal of Organic Chemistry,2008,73(17):6939~6942.
[13] Kuriyama M,Ishiyama N,Shimazawa R,Onomura O.Palladium-imidazolinium carbene-catalyzed arylation of aldehydes with arylboronic acids in water[J].Tetrahedron,2010,66(34):6814~6819.
[14] Zhang T,Shi M.Chiral bidentate bis(N-heterocyclic carbene)-based palladium complexes bearing carboxylate ligands:highly effective catalysts for the enantioselective conjugate addition of arylboronic acids to cyclic enones[J].Chemistry-A European Journal,2008,14(12):3759~3764.
[15] Truscott B J,Fortman G C,Slawin A M Z,Nolan S P.Well-defined [Rh(NHC)(OH)] complexes enabling the conjugate addition of arylboronic acids to α,β-unsaturated ketones[J].Organic & Biomolecular Chemistry,2011,9:7038~7041.
[16] (a) Hayashi T,Takahashi M,Takaya Y,Ogasawara M.Catalytic cycle of rhodium-catalyzed asymmetric 1,4-addition of organoboronic acids.arylrhodium,oxa-π-allylrhodium,and hydroxorhodium intermediates[J].Journal of the American Chemical Society,2002,124(18):5052~5058.(b) Fagnou K,Lautens M.Rhodium-catalyzed carbon?carbon bond forming reactions of organometallic compounds[J].Chemical Reviews,2003,103(1):169~196.
[17] Penafiel I,Pastor I M,Yus M,Esteruelas M A,Oliva?n M.Preparation,hydrogen bonds,and catalytic activity in metalpromoted addition of arylboronic acids to enones of a rhodium complex containing an NHC ligand with an alcohol function[J].Organometallics,2012,31(17):6154~6161.endprint