999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

腫瘤淋巴結轉移相關MicroRNAs的研究進展

2015-01-21 23:55:07張莉,向作林
中國臨床醫學 2015年3期
關鍵詞:胃癌肺癌乳腺癌

?

腫瘤淋巴結轉移相關MicroRNAs的研究進展

張莉向作林

(復旦大學附屬中山醫院放療科,上海200032)

Research Progress of MicroRNAs Associated with Tumor Node Metastasis

ZHANGLiXIANGZuolinDepartmentofRadiotherapy,ZhongshanHospital,FudanUniversity,Shanghai200032,China

1MicroRNAs概述

微小RNA(microRNAs,miRNAs)是一類包含20~24個核苷酸的高度保守的非編碼小分子RNA,可以調節mRNA的翻譯[1]。miRNA結合到多種基因的mRNA的3’-非編碼區,導致靶向mRNA的降解及轉錄的終止[2]。miRNA作為信號通路的樞紐,參與多種生理病理過程,如細胞增殖、凋亡及腫瘤轉移[3-4]。越來越多的研究[5-6]表明,miRNAs可以發揮癌基因或者抑癌基因的作用,它們在多種腫瘤中的異常表達對腫瘤的侵襲和轉移有著重要的影響。因此,異常表達的miRNA有望成分預測腫瘤侵襲及轉移的生物標志物。本文綜述了腫瘤淋巴結轉移相關miRNAs的研究進展。

2miRNA與腫瘤淋巴結轉移

2.1miRNA與頭頸部腫瘤淋巴結轉移Wang等[7]研究表明,EB病毒核抗原1(EBNA1)蛋白在鼻咽癌組織中高表達,并且通過轉化生長因子-β1的介導抑制miR-200a和miR-200b的表達,從而導致鼻咽癌淋巴結轉移的發生。Luo等[8]發現,高表達的miR-18a與晚期鼻咽癌的淋巴結轉移相關。Huang等[9]發現,miR-491-5p 低表達與口腔鱗狀細胞癌淋巴結轉移有關。Lu等[10]研究發現,miR-196a/b在腫瘤組織中高度表達,并且與口腔癌淋巴結轉移密切相關。Yang等[11]研究表明,miR-181可以作為口腔鱗狀細胞癌淋巴結轉移的生物標志物。Abraham 等[12]發現,miR-183 和miR-375的超表達與甲狀腺髓樣癌的對側淋巴結轉移相關(P<0.001、P=0.001)。Chou等[13]研究發現,miR-146b可以顯著增加甲狀腺乳頭狀癌細胞的遷移和侵襲。Wang等[14]發現,miR-2861和miR-451的低表達上調與甲狀腺髓樣癌淋巴結轉移密切相關。

2.2miRNA與胸部腫瘤淋巴結轉移有研究[15-17]表明,高表達的miR-21與食管鱗狀細胞癌的淋巴結轉移顯著相關。Huang等[18]發現,miR-98和 miR-214的表達水平與食管鱗狀細胞癌淋巴結轉移呈負相關。Zhang等[19]研究表明,發生淋巴結轉移的食管鱗狀細胞癌患者中miR-200b表達顯著下降。Wang等[20]發現,miR-196a的高表達與食管鱗狀細胞癌淋巴結轉移相關。Chen等[21]發現,miR-92a高表達的食管鱗狀細胞癌患者較低表達者更容易發生淋巴結轉移。

在非小細胞肺癌的研究中,Meng 等[22]應用全基因組測序證實表達上調的miR-31可以預測肺腺癌患者淋巴結轉移,而且提示預后不良。Yu 等[23]發現,miR-193a-3p/5p低表達與非小細胞肺癌的TNM分期和淋巴結轉移明顯相關。Wang等[24]用基因芯片分析了非小細胞肺癌組織中miRNA的表達譜,發現了40個異常表達的miRNA,其中下調最明顯的miR-451與非小細胞肺癌的分化程度,病理分期和淋巴結轉移顯著相關。Roth 等[25]發現,肺癌患者血清中高表達的miR-10b與淋巴結轉移相關(P<0.03)。Wang等[26]的研究表明,miR-451的低表達水平與非小細胞肺癌的淋巴結轉移相關。Chen等[27]的研究表明,miR-148a的低表達與非小細胞肺癌的淋巴結轉移有關。Li等[28]發現,miR-339-5p可以抑制非小細胞肺癌的淋巴結轉移相關。

Chan等[29]首次發現,低表達的miR-149與乳腺癌患者的淋巴結轉移有密切關系。Yigit 等[30]提出,通過下調miR-10b的表達,可以阻止乳腺癌發生淋巴結轉移。Chen等[31]也發現,miR-10b 和miR-373可作為預測乳腺癌淋巴結轉移的生物標志物。Yang等[32]發現,miR-34可以抑制乳腺癌的侵襲和淋巴結轉移。研究[33-34]發現,發生淋巴結轉移的乳腺癌患者miR-200b表達下調。Gravgaard等[35]運用原位雜交實驗證實miR-200家族和miR-9參與了乳腺癌的遠處轉移。Zhang等[36]研究表明,miR-30a與乳腺癌患者的淋巴結轉移和肺轉移程度呈負相關。Corcoran等[37]發現,miR-21高表達與乳腺癌淋巴結轉移相關。Chu等[38]認為,miR-190a通過多種途徑抑制乳腺癌淋巴結轉移。Li等[39]研究證實,miR-720通過直接靶向下調TWIST1而抑制乳腺癌的轉移。

2.3miRNA與腹部腫瘤淋巴結轉移Zheng等[40]發現,miR-148a下調將會導致胃癌患者發生淋巴結轉移。Tang 等[41]發現,miR-200b、 miR-200c下調與胃癌的淋巴結轉移有關。有研究[42]表明,miR-146a表達降低對胃癌淋巴結轉移的發生起著重要的作用。Zheng 等[43]運用基因芯片和生物信息學分析證實,miR-409可以抑制胃癌細胞發生淋巴結轉移。Zhao等[44]發現,miR-7參與了胃癌上皮間質轉化及淋巴結轉移等生物學行為。Xu等[45]發現,miR-335的低表達和胃癌淋巴結轉移明顯相關。Feng等[46]發現,miR-126在胃癌淋巴結轉移中起著腫瘤抑制基因的作用。Shin 等[47]發現,miR-135a可以抑制胃癌淋巴結轉移。Xu等[48]發現,miR-21可以作為預測胃癌淋巴結轉移的生物標志物。Chen等[49]發現,miR-10a參與了胃癌淋巴結轉移的發生。

Yuan等[50]研究表明,在結直腸癌細胞中,miR-221和miR-224的表達水平與其淋巴結轉移以及腫瘤分期呈負相關。Siemens等[51]發現,miR-34a啟動子甲基化與結腸癌的遠處轉移有關。Toiyama等[52]發現,血清中高表達的miR-200c是結直腸癌淋巴結轉移的獨立預測因子(P=0.0005)。此外,Paterson等[53]也發現,高表達的miR-200家族參與了結直腸癌的淋巴結轉移。Chen等[54]研究發現,miR-103/107可以促進結直腸癌淋巴結轉移及遠處轉移。Yuan等[55]發現,miR-145表達上調在結直腸癌淋巴結轉移中起著重要的作用。Wang等[56]研究表明,miR-195 表達下降與結直腸癌淋巴結轉移及預后差有關。

Chen等[57]發現,發生淋巴結轉移患者的肝癌組織中,miR-100表達降低。Guo等[58]發現,在體外miR-34a的異常表達可以抑制Hepa1-6和HCa-F細胞的生長和侵襲;此外,miR-34a可以引起G1期阻滯,并且下調Hepa1-6 細胞中cyclinD1和CDK6的表達;而且該研究進一步發現miR-34a可以降低Hca-F細胞黏附到局域淋巴結的能力,進而抑制肝癌淋巴結轉移。

Caponi等[59]研究發現,高表達的miR-21與胰腺導管乳頭狀瘤淋巴結陽性相關(P=0.03)。He等[60]發現,miR-218和 ROBO-1 信號通路參與胰腺癌淋巴結轉移。

2.4miRNA與泌尿生殖系統腫瘤淋巴結轉移Brase等[61]發現,在前列腺癌淋巴結陽性患者的血清中,miR-375和miR-141水平升高。Spahn等[62]研究表明,低表達的miR-221有望成為預測前列腺癌淋巴結轉移的生物標志物。Chen等[63]發現,血清中的6個microRNAs :miR-1246、miR-20a、miR-2392、miR-3147、miR-3162-5p、miR-4484,可預測早期宮頸癌的淋巴結轉移。Zhao 等[64]發現,可以根據血清中高表達的miR-20a和低表達的miR-203篩選出發生淋巴結轉移的早期宮頸癌患者。Yeh等[65]研究表明,miR-138低表達和SOX4高表達的卵巢癌患者更容易發生淋巴結轉移,且腫瘤分級較高,也更易出現腹水。de Melo等研究[66]發現,miR-223-5p和miR-19-b1-5p的下調與外陰腫瘤的淋巴結轉移相關,miR-100-3p 和miR-19-b1-5p的下調與外陰腫瘤的侵襲有關,miR-519b和miR-133a與其FIGO晚期有關。

3小結

近年來,miRNA與腫瘤淋巴結轉移的研究取得了較大進展,為腫瘤的基因診斷、治療提供了新靶點。然而,腫瘤淋巴結轉移的機制還不完全明了。如果能通過建立腫瘤淋巴結轉移的預測模型來預測淋巴結轉移的發生,篩選出腫瘤淋巴結轉移的高危人群,就能早期對其淋巴引流區進行預防性治療,降低淋巴結轉移,提高患者的生活質量,延長無瘤生存期。這將從根本上改變腫瘤淋巴結轉移的治療,即由出現淋巴結轉移后的姑息性被動治療轉變為積極預防淋巴結轉移的主動治療。因此,篩選腫瘤淋巴結轉移相關的miRNA、建立腫瘤淋巴結轉移的預測模型具有非常重要的意義,有助于指導個體化治療策略的制定。

參考文獻

[1]Calin GA, Croce CM. MicroRNA signatures in human cancers[J]. Nat Rev Cancer, 2006,6(11):857-866.

[2]Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs[J]. Science, 2001,294(5543):853-858.

[3]Ambros V. The functions of animal microRNAs[J]. Nature, 2004,431(7006):350-355.

[4]Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction[J]. Nat Rev Mol Cell Biol, 2010,11(4):252-263.

[5]Slack FJ, Weidhaas JB. MicroRNA in cancer prognosis[J]. N Engl J Med, 2008,359(25):2720-2722.

[6]Cheng CJ, Slack FJ. The duality of oncomiR addiction in the maintenance and treatment of cancer[J]. Cancer J, 2012,18(3):232-237.

[7]Wang L, Tian WD, Xu X, et al. Epstein-Barr virus nuclear antigen 1 (EBNA1) protein induction of epithelial-mesenchymal transition in nasopharyngeal carcinoma cells[J]. Cancer, 2014,120(3):363-372.

[8]Luo Z, Dai Y, Zhang L, et al. miR-18a promotes malignant progression by impairing microRNA biogenesis in nasopharyngeal carcinoma[J]. Carcinogenesis, 2013,34(2):415-425.

[9]Huang WC, Chan SH, Jang TH, et al. miRNA-491-5p and GIT1 serve as modulators and biomarkers for oral squamous cell carcinoma invasion and metastasis[J]. Cancer Res, 2014,74(3):751-764.

[10]Lu YC, Chang JT, Liao CT, et al. OncomiR-196 promotes an invasive phenotype in oral cancer through the NME4-JNK-TIMP1-MMP signaling pathway[J]. Mol Cancer, 2014,13:218.

[11]Yang CC, Hung PS, Wang PW, et al. miR-181 as a putative biomarker for lymph-node metastasis of oral squamous cell carcinoma[J]. J Oral Pathol Med, 2011,40(5):397-404.

[12]Abraham D, Jackson N, Gundara JS, et al. MicroRNA profiling of sporadic and hereditary medullary thyroid cancer identifies predictors of nodal metastasis, prognosis, and potential therapeutic targets[J]. Clin Cancer Res, 2011,17(14):4772-4781.

[13]Chou CK, Yang KD, Chou FF, et al. Prognostic implications of miR-146b expression and its functional role in papillary thyroid carcinoma[J]. J Clin Endocrinol Metab, 2013,98(2):E196-E205.

[14]Wang Z, Zhang H, Zhang P, et al. Upregulation of miR-2861 and miR-451 expression in papillary thyroid carcinoma with lymph node metastasis[J]. Med Oncol, 2013,30(2):577.

[15]Sakai NS, Samia-Aly E, Barbera M, et al. A review of the current understanding and clinical utility of miRNAs in esophageal cancer[J]. Semin Cancer Biol, 2013,23(6 Pt B):512-521.

[16]Hiyoshi Y, Kamohara H, Karashima R, et al. MicroRNA-21 regulates the proliferation and invasion in esophageal squamous cell carcinoma[J]. Clin Cancer Res, 2009,15(6):1915-1922.

[17]Tanaka Y, Kamohara H, Kinoshita K, et al. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma[J]. Cancer, 2013,119(6):1159-1167.

[18]Huang SD, Yuan Y, Zhuang CW, et al. MicroRNA-98 and microRNA-214 post-transcriptionally regulate enhancer of zeste homolog 2 and inhibit migration and invasion in human esophageal squamous cell carcinoma[J]. Mol Cancer, 2012,11:51.

[19]Zhang HF, Zhang K, Liao LD, et al. miR-200b suppresses invasiveness and modulates the cytoskeletal and adhesive machinery in esophageal squamous cell carcinoma cells via targeting Kindlin-2[J]. Carcinogenesis, 2014,35(2):292-301.

[20]Wang K, Li J, Guo H, et al. MiR-196a binding-site SNP regulates RAP1A expression contributing to esophageal squamous cell carcinoma risk and metastasis[J]. Carcinogenesis, 2012,33(11):2147-2154.

[21]Chen ZL, Zhao XH, Wang JW, et al. microRNA-92a promotes lymph node metastasis of human esophageal squamous cell carcinoma via E-cadherin[J]. J Biol Chem, 2011,286(12):10725-10734.

[22]Meng W, Ye Z, Cui R, et al. MicroRNA-31 predicts the presence of lymph node metastases and survival in patients with lung adenocarcinoma[J]. Clin Cancer Res, 2013,19(19):5423-5433.

[23]Yu T, Li J, Yan M, et al. MicroRNA-193a-3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway[J]. Oncogene, 2014.

[24]Wang R, Wang ZX, Yang JS, et al. MicroRNA-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (RAB14)[J]. Oncogene, 2011,30(23):2644-2658.

[25]Roth C, Kasimir-Bauer S, Pantel K, et al. Screening for circulating nucleic acids and caspase activity in the peripheral blood as potential diagnostic tools in lung cancer[J]. Mol Oncol, 2011,5(3):281-291.

[26]Wang XC, Tian LL, Jiang XY, et al. The expression and function of miRNA-451 in non-small cell lung cancer[J]. Cancer Lett, 2011,311(2):203-209.

[27]Chen Y, Min L, Zhang X, et al. Decreased miRNA-148a is associated with lymph node metastasis and poor clinical outcomes and functions as a suppressor of tumor metastasis in non-small cell lung cancer[J]. Oncol Rep, 2013,30(4):1832-1840.

[28]Li Y, Zhao W, Bao P, et al. miR-339-5p inhibits cell migration and invasion and may be associated with the tumor-node-metastasis staging and lymph node metastasis of non-small cell lung cancer[J]. Oncol Lett, 2014,8(2):719-725.

[29]Chan SH, Huang WC, Chang JW, et al. MicroRNA-149 targets GIT1 to suppress integrin signaling and breast cancer metastasis[J]. Oncogene, 2014,33(36):4496-4507.

[30]Yigit MV, Ghosh SK, Kumar M, et al. Context-dependent differences in miR-10b breast oncogenesis can be targeted for the prevention and arrest of lymph node metastasis[J]. Oncogene, 2013,32(12):1530-1538.

[31]Chen W, Cai F, Zhang B, et al. The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers[J]. Tumour Biol, 2013,34(1):455-462.

[32]Yang S, Li Y, Gao J, et al. MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1[J]. Oncogene, 2013,32(36):4294-4303.

[33]Wee EJ, Peters K, Nair SS, et al. Mapping the regulatory sequences controlling 93 breast cancer-associated miRNA genes leads to the identification of two functional promoters of the Hsa-mir-200b cluster, methylation of which is associated with metastasis or hormone receptor status in advanced breast cancer[J]. Oncogene, 2012,31(38):4182-4195.

[34]Zhang X, Zhang B, Gao J, et al. Regulation of the microRNA 200b (miRNA-200b) by transcriptional regulators PEA3 and ELK-1 protein affects expression of Pin1 protein to control anoikis[J]. J Biol Chem, 2013,288(45):32742-32752.

[35]Gravgaard KH, Lyng MB, Laenkholm AV, et al. The miRNA-200 family and miRNA-9 exhibit differential expression in primary versus corresponding metastatic tissue in breast cancer[J]. Breast Cancer Res Treat, 2012,134(1):207-217.

[36]Zhang N, Wang X, Huo Q, et al. MicroRNA-30a suppresses breast tumor growth and metastasis by targeting metadherin[J]. Oncogene, 2014,33(24):3119-3128.

[37]Corcoran C, Friel A M, Duffy M J, et al. Intracellular and extracellular microRNAs in breast cancer[J]. Clin Chem, 2011,57(1):18-32.

[38]Chu HW, Cheng CW, Chou WC, et al. A novel estrogen receptor-microRNA 190a-PAR-1-pathway regulates breast cancer progression, a finding initially suggested by genome-wide analysis of loci associated with lymph-node metastasis[J]. Hum Mol Genet, 2014,23(2):355-367.

[39]Li LZ, Zhang CZ, Liu LL, et al. miR-720 inhibits tumor invasion and migration in breast cancer by targeting TWIST1[J]. Carcinogenesis, 2014,35(2):469-478.

[40]Zheng B, Liang L, Wang C, et al. MicroRNA-148a suppresses tumor cell invasion and metastasis by downregulating ROCK1 in gastric cancer[J]. Clin Cancer Res, 2011,17(24):7574-7583.

[41]Tang H, Deng M, Tang Y, et al. miR-200b and miR-200c as prognostic factors and mediators of gastric cancer cell progression[J]. Clin Cancer Res, 2013,19(20):5602-5612.

[42]Kogo R, Mimori K, Tanaka F, et al. Clinical significance of miR-146a in gastric cancer cases[J]. Clin Cancer Res, 2011,17(13):4277-4284.

[43]Zheng B, Liang L, Huang S, et al. MicroRNA-409 suppresses tumour cell invasion and metastasis by directly targeting radixin in gastric cancers[J]. Oncogene, 2012,31(42):4509-4516.

[44]Zhao X, Dou W, He L, et al. MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor[J]. Oncogene, 2013,32(11):1363-1372.

[45]Xu Y, Zhao F, Wang Z, et al. MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1[J]. Oncogene, 2012,31(11):1398-1407.

[46]Feng R, Chen X, Yu Y, et al. miR-126 functions as a tumour suppressor in human gastric cancer[J]. Cancer Lett, 2010,298(1):50-63.

[47]Shin JY, Kim YI, Cho SJ, et al. MicroRNA 135a suppresses lymph node metastasis through down-regulation of ROCK1 in early gastric cancer[J]. PLoS One, 2014,9(1):e85205.

[48]Xu Y, Sun J, Xu J, et al. miR-21 Is a Promising Novel Biomarker for Lymph Node Metastasis in Patients with Gastric Cancer[J]. Gastroenterol Res Pract, 2012,2012:640168.

[49]Chen W, Tang Z, Sun Y, et al. miRNA expression profile in primary gastric cancers and paired lymph node metastases indicates that miR-10a plays a role in metastasis from primary gastric cancer to lymph nodes[J]. Exp Ther Med, 2012,3(2):351-356.

[50]Yuan K, Xie K, Fox J, et al. Decreased levels of miR-224 and the passenger strand of miR-221 increase MBD2, suppressing maspin and promoting colorectal tumor growth and metastasis in mice[J]. Gastroenterology, 2013,145(4):853-864.

[51]Siemens H, Neumann J, Jackstadt R, et al. Detection of miR-34a promoter methylation in combination with elevated expression of c-Met and beta-catenin predicts distant metastasis of colon cancer[J]. Clin Cancer Res, 2013,19(3):710-720.

[52]Toiyama Y, Hur K, Tanaka K, et al. Serum miR-200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer[J]. Ann Surg, 2014,259(4):735-743.

[53]Paterson EL, Kazenwadel J, Bert AG, et al. Down-regulation of the miRNA-200 family at the invasive front of colorectal cancers with degraded basement membrane indicates EMT is involved in cancer progression[J]. Neoplasia, 2013,15(2):180-191.

[54]Chen HY, Lin YM, Chung HC, et al. miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4[J]. Cancer Res, 2012,72(14):3631-3641.

[55]Yuan W, Sui C, Liu Q, et al. Up-regulation of microRNA-145 associates with lymph node metastasis in colorectal cancer[J]. PLoS One, 2014,9(7):e102017.

[56]Wang X, Wang J, Ma H, et al. Downregulation of miR-195 correlates with lymph node metastasis and poor prognosis in colorectal cancer[J]. Med Oncol, 2012,29(2):919-927.

[57]Chen P, Zhao X, Ma L. Downregulation of microRNA-100 correlates with tumor progression and poor prognosis in hepatocellular carcinoma[J]. Mol Cell Biochem, 2013,383(1-2):49-58.

[58]Guo Y, Li S, Qu J, et al. MiR-34a inhibits lymphatic metastasis potential of mouse hepatoma cells[J]. Mol Cell Biochem, 2011,354(1-2):275-282.

[59]Caponi S, Funel N, Frampton AE, et al. The good, the bad and the ugly: a tale of miR-101, miR-21 and miR-155 in pancreatic intraductal papillary mucinous neoplasms[J]. Ann Oncol, 2013,24(3):734-741.

[60]He H, Di Y, Liang M, et al. The microRNA-218 and ROBO-1 signaling axis correlates with the lymphatic metastasis of pancreatic cancer[J]. Oncol Rep, 2013,30(2):651-658.

[61]Brase JC, Johannes M, Schlomm T, et al. Circulating miRNAs are correlated with tumor progression in prostate cancer[J]. Int J Cancer, 2011,128(3):608-616.

[62]Spahn M, Kneitz S, Scholz CJ, et al. Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence[J]. Int J Cancer, 2010,127(2):394-403.

[63]Chen J, Yao D, Li Y, et al. Serum microRNA expression levels can predict lymph node metastasis in patients with early-stage cervical squamous cell carcinoma[J]. Int J Mol Med, 2013,32(3):557-567.

[64]Zhao S, Yao D, Chen J, et al. Circulating miRNA-20a and miRNA-203 for screening lymph node metastasis in early stage cervical cancer[J]. Genet Test Mol Biomarkers, 2013,17(8):631-636.

[65]Yeh YM, Chuang CM, Chao KC, et al. MicroRNA-138 suppresses ovarian cancer cell invasion and metastasis by targeting SOX4 and HIF-1alpha[J]. Int J Cancer, 2013,133(4):867-878.

[66]de Melo MB, Lavorato-Rocha AM, Rodrigues LS, et al. microRNA portraits in human vulvar carcinoma[J]. Cancer Prev Res (Phila), 2013,6(11):1231-1241.

通訊作者向作林,E-mail: Xiangzuolinmd@hotmail.com

基金項目:上海市衛生局面上項目(編號:20124208)

中圖分類號R73-37

文獻標識碼A

猜你喜歡
胃癌肺癌乳腺癌
中醫防治肺癌術后并發癥
保健醫苑(2023年2期)2023-03-15 09:03:04
絕經了,是否就離乳腺癌越來越遠呢?
中老年保健(2022年6期)2022-08-19 01:41:48
對比增強磁敏感加權成像對肺癌腦轉移瘤檢出的研究
乳腺癌是吃出來的嗎
胸大更容易得乳腺癌嗎
別逗了,乳腺癌可不分男女老少!
祝您健康(2018年5期)2018-05-16 17:10:16
P53及Ki67在胃癌中的表達及其臨床意義
胃癌組織中LKB1和VEGF-C的表達及其意義
microRNA-205在人非小細胞肺癌中的表達及臨床意義
胃癌組織中VEGF和ILK的表達及意義
主站蜘蛛池模板: 狠狠v日韩v欧美v| 真人免费一级毛片一区二区| 午夜福利在线观看成人| 毛片久久网站小视频| 国产日韩精品一区在线不卡 | 亚洲精品国产精品乱码不卞| 免费人成在线观看视频色| a毛片在线| 丝袜国产一区| 亚洲视频影院| 国产成人永久免费视频| 日本国产精品一区久久久| 中文字幕无线码一区| 亚洲首页国产精品丝袜| 中文字幕精品一区二区三区视频| 欧美三級片黃色三級片黃色1| 欧美在线国产| 9丨情侣偷在线精品国产| 午夜福利无码一区二区| 午夜性刺激在线观看免费| 99爱在线| 一本大道视频精品人妻 | 青青操国产| 亚洲AV人人澡人人双人| 国产成人精品第一区二区| 欧美h在线观看| 国产丝袜无码一区二区视频| 18禁影院亚洲专区| 欧美国产精品拍自| 亚洲精品在线影院| 四虎永久在线精品国产免费 | 欧美日韩国产一级| 日本亚洲国产一区二区三区| 欧美精品啪啪一区二区三区| 国产va在线| 91精品啪在线观看国产91| 国产精品视频猛进猛出| 久久大香香蕉国产免费网站| 中文字幕亚洲无线码一区女同| 91精品国产丝袜| 欧美国产精品不卡在线观看| a毛片基地免费大全| 97精品久久久大香线焦| 日韩国产综合精选| 爽爽影院十八禁在线观看| 成人自拍视频在线观看| 欧美一级特黄aaaaaa在线看片| 国产va视频| 国产迷奸在线看| 欧美黄网在线| 秘书高跟黑色丝袜国产91在线| 日韩中文精品亚洲第三区| 黄色国产在线| 在线国产资源| 不卡国产视频第一页| 国产欧美日韩专区发布| 在线观看国产网址你懂的| 人妻无码一区二区视频| 久久香蕉欧美精品| 欧美精品伊人久久| 国产女人18水真多毛片18精品| 国产在线专区| 三级国产在线观看| 亚洲日韩精品无码专区97| 国产精品漂亮美女在线观看| 成人午夜网址| 2021最新国产精品网站| a免费毛片在线播放| 免费一级毛片在线播放傲雪网| 四虎国产在线观看| 无码国产偷倩在线播放老年人| 久久精品视频一| 99re免费视频| 26uuu国产精品视频| 另类重口100页在线播放| 亚洲天堂自拍| 国产第四页| 国产精品一老牛影视频| 国产福利在线观看精品| 日韩视频福利| 久久国产精品电影| 亚洲福利网址|