龐佼佼,陳玉國,任 駿(山東大學齊魯醫(yī)院急診科,山東 濟南 500;Center for Cardiovascular Research and Alternative Medicine,University of Wyoming College of Health Sciences,Laramie,WY 807,USA)
·綜述·
ALDH2對缺血再灌中心肌損傷的保護作用及其作用機制
龐佼佼1,2,陳玉國1,任 駿2(1山東大學齊魯醫(yī)院急診科,山東 濟南 250012;2Center for Cardiovascular Research and Alternative Medicine,University of Wyoming College of Health Sciences,Laramie,WY 82071,USA)
隨著冠心病發(fā)病率的升高和診療技術的提高,如何有效保護心肌免受缺血再灌注損傷(ischemia-reperfusion injury or I/R injury),提高治療效果成為目前臨床治療的突出問題.乙醛脫氫酶2(Aldehyde Dehydrogenase-2,ALDH2)是人體中活性最強的醛脫氫酶,近年來其參與心肌保護的特殊角色越來越被人們熟知.本文將就 ALDH2在心肌缺血再灌注中的心肌保護作用、主要機制及轉(zhuǎn)化醫(yī)學研究予以綜述.
ALDH2;心肌缺血再灌注;轉(zhuǎn)化
心肌損傷是各類心血管疾病進展為心力衰竭的共同通路和關鍵環(huán)節(jié),是多種心臟疾病的病理生理基礎,是疾病級聯(lián)反應中的根本促發(fā)因素.隨著冠心病發(fā)病率的升高和臨床診療技術的提高,心肌缺血再灌注損傷成為心肌損傷領域的重要課題.及時有效恢復缺血心肌的血流供應是減輕缺血癥狀、防止心肌梗死面積進一步加大的最有效方法,然而再灌注可使心肌損傷進一步加重,并有發(fā)生致命性心律失常等危險.臨床血管成形術與溶栓術并不能預防缺血造成的心肌損傷,也不能減輕再灌注損傷.如何有效減輕缺血再灌注損傷仍是醫(yī)學界的難題.
心肌在不良刺激下是適應、存活,還是損傷、死亡,結(jié)局取決于其內(nèi)源性保護機制與死亡信號之間的角力.氧化應激是缺血再灌注損傷最主要的機制,在缺血再灌注過程中將產(chǎn)生大量活性氧(Reactive oxygen species,ROS)[1].在 ROS的攻擊下,細胞內(nèi)非飽和脂質(zhì)被氧化,同時產(chǎn)生大量活性醛類物質(zhì),其中乙醛就是其中產(chǎn)量最高和毒性最強的代謝產(chǎn)物[2].由于醛類遠比ROS穩(wěn)定,所以將彌散到器官各處,放大了氧化損傷的效應.4-HNE(4-羥壬烯醛 )和 MDA(丙二醛)是醛類主要的代謝產(chǎn)物,毒性高,可與蛋白質(zhì)、DNA等大分子物質(zhì)形成加合物影響其功能[3].隨著心臟內(nèi)醛類物質(zhì)的蓄積,將對心肌細胞產(chǎn)生很大的毒性作用.而在心肌保護機制中作為心肌細胞能量工廠和應激中樞的線粒體扮演了重要角色.以線粒體這一關鍵細胞器為切入點,運用蛋白質(zhì)組學技術,發(fā)現(xiàn)在心肌損傷過程中 ALDH2的活性發(fā)生改變[4].鑒于其位于線粒體這一重要細胞器,并降解有害醛類物質(zhì),因而推斷其參與心臟功能維護,而一系列體內(nèi)外實驗的開展揭開了ALDH2心肌保護研究的序幕,證明ALDH2活性增加可以減輕多種心肌損傷,包括缺血再灌注損傷,并在心肌保護中扮演重要角色[5-9].ALDH2是模仿缺血預適應,預防缺血再灌注損傷的新靶點,有重要的潛在臨床應用價值.近年來學者們對ALDH2與心肌缺血再灌注的研究更加深入,證明其不僅通過解毒活性醛類物質(zhì),還通過調(diào)節(jié)自噬等機制減輕缺血再灌注損傷.
人體內(nèi)有19種ALDH,其中ALDH2位于線粒體內(nèi),是活性最強的醛脫氫酶,在心臟中含量也遠高于其他醛脫氫酶[10].ALDH2廣泛參與了體內(nèi)醛類物質(zhì)的氧化,起到清除活性醛類物質(zhì)的作用[11].ALDH2還是一種硝酸還原酶,參與硝酸甘油的生物轉(zhuǎn)化[12].ALDH2基因位于染色體12q24.2,由13個外顯子組成,其中外顯子 12處可發(fā)生點突變(Glu504Lys),使正常的等位基因ALDH2*1變?yōu)橥蛔冃?ALDH2*2,導致ALDH2酶活性顯著下降[13].ALDH2基因在高加索人中突變率極低,而東亞人種中,ALDH2突變率約為40%[14,15].ALDH2活性下降的人群中,由于對飲酒后乙醇代謝所產(chǎn)生的乙醛難以降解,將導致面紅耳赤,惡心難受,所以有學者將其俗稱為“臉紅”(flushing face)基因.
Chen等[5]首先發(fā)現(xiàn) ALDH2在心肌缺血再灌注損傷中起重要保護作用,參與缺血前適應的信號轉(zhuǎn)導通路,ALDH2的活性與心肌梗死面積呈顯著負相關.隨后多項實驗數(shù)據(jù)[16-20]也表明,ALDH2活性增加可有效減輕心肌缺血再灌注損傷,減小心肌梗死面積,改善心肌收縮功能及射血分數(shù),降低缺血再灌注性心律失常的發(fā)生.中國[21-22]、日本[23]等國 家的流行 病學研究均表明,ALDH2的基因多態(tài)性與冠心病有密切關聯(lián),ALDH2突變型攜帶者有更高的冠心病發(fā)病率.獨立的全基因組關聯(lián)分析[24-25]和 meta分析[26-27]進一步證實了這一觀點.
心肌缺血再灌注過程中氧化應激導致脂質(zhì)過氧化,在此過程中產(chǎn)生大量醛類物質(zhì),尤其是4-HNE和MDA等乙醛代謝產(chǎn)物具有高活性和穩(wěn)定性,不僅影響糖酵解,改變蛋白酶體活性,更重要的是,它們可以直接抑制線粒體呼吸鏈功能,促使線粒體通透性轉(zhuǎn)化通道開放,直接導致線粒體功能障礙[28-31].線粒體功能障礙將進一步加重氧化應激反應,從而導致更多活性醛類物質(zhì)生成,形成惡性循環(huán).實驗證明,4-HNE可導致心肌收縮功能紊亂[31].另外,4-HNE被認為是乙醛導致過度自噬的重要介質(zhì)[32],并且可作為信號分子調(diào)節(jié)轉(zhuǎn)錄,抑制細胞周期,促進細胞凋亡[33-34].實驗表明,在心肌梗死后數(shù)周內(nèi),心臟線粒體功能持續(xù)受損,線粒體H2O2的釋放大量增加,伴隨脂質(zhì)過氧化及 4-HNE加成蛋白的形成,以及電子傳遞鏈復合物I和 V的減低[20].所以,在 I/R損傷中乙醛及其代謝物起著極其重要的作用.研究表明,ALDH2可顯著抑制缺血再灌注過程中 4-HNE生成、蛋白損傷及 4-HNE導致的心功能紊亂[17].ALDH2通過催化4-HNE轉(zhuǎn)為無活性的4-HNA,減輕活性醛類物質(zhì)的毒性作用及其誘導的氧化應激反應,解除二者的惡性循環(huán),并阻止4-HNE介導的自噬、細胞凋亡等不良因素,是ALDH2發(fā)揮顯著心肌保護作用的重要機制.4-HNE可導致LKB1和PTEN信號傳導通路的抑制[17],而LKB1和PTEN是AMPK和Akt的上游因子,所以ALDH2可以通過解毒4-HNE對AMPK與Akt發(fā)揮調(diào)控作用.但4-HNE濃度高時可以抑制ALDH2的活性,一方面,4-HNE在高濃度時可直接對ALDH產(chǎn)生抑制,另一方面,4-HNE可與Cys302共價結(jié)合,占據(jù) ALDH2的活性位點,導致大于 90%的酶活 性 被 抑 制[5,20].
自噬(Autophagy)被認為是一種進化保守的機制,用以在應激時維持細胞穩(wěn)態(tài),促進細胞生存.細胞內(nèi)受損或衰老的蛋白質(zhì)、細胞器可在自噬過程中被運輸?shù)饺苊阁w進行消化降解,降解過程中可產(chǎn)生氨基酸等物質(zhì)供細胞循環(huán)利用并釋放一定能量,完成細胞自我更新[35].但自噬是一把雙刃劍.有研究表明,自噬在缺血前適應中發(fā)揮重要心肌保護作用[36,37].且在輕度刺激下,如短暫的缺血或低水平的氧化應激,增強的自噬可通過清除受損細胞器,循環(huán)利用大分子物質(zhì)減輕細胞損傷,促進細胞生存.相反地,持續(xù)的缺血及再灌注的發(fā)生可導致過度及持續(xù)自噬,反而使細胞器和蛋白過度降解,發(fā)生自噬性II型程序性細胞死亡[38].所以,將自噬調(diào)節(jié)在合適水平可能會有效控制缺血再灌注性心肌損傷.我們實驗室最早證明ALDH2在缺血、再灌注兩個階段中對自噬起雙向調(diào)節(jié)作用,改善心肌收縮功能以及減小梗死面積[17].心肌缺血時,低氧、ATP耗竭及細胞器損傷激活自噬,自噬通過清除受損細胞器,降解有害物質(zhì)保護心肌.而再灌注時,氧化應激、線粒體損傷、內(nèi)質(zhì)網(wǎng)應激等進一步刺激導致自噬過度激活,最終損傷心肌.進一步的機制研究證明,心肌缺血時,AMPK被激活,而ALDH2進一步明顯增強AMPK的激活,AMPK抑制自噬的反向調(diào)節(jié)因子mTOR,減弱 mTOR對自噬的抑制作用而增強自噬水平;再灌注時,AMPK活性不再,ALDH2通過增強 Akt的磷酸化,從而增加 mTOR的表達,使過度激活的自噬受到抑制[17].通過兩個階段的雙重作用,ALDH2在缺血再灌注過程中有效減輕缺血再灌注損傷.
另外,在酒 精 性心 肌 病[39-41]、糖 尿 病 性 心肌病[42]、心衰[43]等心血管疾病模型中也證明了ALDH2通過調(diào)節(jié)自噬起心肌保護作用.我們實驗室的結(jié)果還表明,ALDH2可通過調(diào)節(jié)自噬,減輕內(nèi)質(zhì)網(wǎng)應激(endoplasmic reticulum stress or ER stress)引起的心肌收縮功能障礙[44].自噬還與線粒體功能有重要關聯(lián),二者在心肌損傷中互為因果[45].
心肌缺血再灌注過程中,缺血的心肌快速恢復血流灌注后易誘發(fā)再灌注性心律失常,發(fā)生率高達50%~80%,嚴重者可發(fā)生心室顫動甚至交感風暴.再灌注性心律失常的機制復雜.其中最常見的機制為,心肌缺血再灌注過程中肥大細胞釋放腎素,造成局部腎素-血管緊張素系統(tǒng)的形成,使局部交感神經(jīng)興奮,從而導致心律失常[46].心臟交感神經(jīng)中ALDH2的激活可減少再灌注性心律失常的發(fā)生[16,47,48],且其可 能 機 制為,ALDH2可通 過 腺 苷 A(2b)/A(3)受體-PKCε-ALDH2信號通路模仿缺血預適應,減少心臟肥大細胞因過氧化引起的脫顆粒及腎素釋放,阻止局部RAS激活,減少去甲腎上腺素的釋放.此外,ALDH2還可通過解毒活性醛類物質(zhì)減輕氧化應激降低再灌注性心律失常的發(fā)生[47].
既然 ALDH2具有保護心肌的作用,那么能否為心肌損傷的患者帶來益處?能否在目前標準藥物治療的基礎上,進一步拓寬心肌保護的藥物治療譜?Alda-1是ALDH2的特異性激活劑,可使野生型ALDH2活性在基礎水平上成倍增加,可增強純合子突變型(A/A)ALDH2的活性10倍,增強雜合子突變型(G/A)ALDH2的活性1倍,使雜合子突變型基本達到野生型(G/G)的水平[5],這種彌補基因型所致的功能不足的作用很罕見.Alda-1不僅可增強ALDH2的活性,還可阻止4-HNE導致的ALDH2失活[5].Alda-1可用于心臟缺血前適應預防心肌損傷[5]、缺血再灌注時減輕心肌損傷[17,49],也可用于心肌梗死后治療心肌損傷[20],此外,有研究證明,在遠端缺血前適應[50]和遠端缺血后適應[51]的過程中,均有ALDH2參與.Alda-1治療的缺血再灌注或心肌梗死心臟中,4-HNE蛋白加成物的聚積顯著降低,心肌梗死面積減少,心臟功能明顯改善[5,20].此外,Alda-1還可通過激活 ALDH2改善酒精性心肌病[40]、糖尿病性心肌病[52]、心力衰竭[53]、動脈粥樣硬化[54]等心臟疾病,以及腦缺血與梗死[55],肝硬化[54]等疾病,有很大的臨床應用前景.
中華民族有悠久的酒文化,一直以來人們在酒精與健康的關系上爭論不休.從ALDH2與心臟疾病關系的角度出發(fā),適量飲酒可使ALDH2活性增加,模仿缺血前適應,并促進NO生成,起到減少心肌梗死面積、減輕心肌損傷等保護心肌的作用[5,56-57].
此外,硫辛酸(Alpha-lipoic acid)[58-59]、異氟烷(Isoflurane)[60]、聚腺苷二磷酸核糖聚合酶-1(PARP -1)抑制劑[61]等都被證明有激活 ALDH2,保護心肌的作用.這些研究結(jié)果預示了將 ALDH2激活劑用于治療急慢性心肌損傷的重要臨床價值,為改善心肌梗死預后、保護殘存心肌細胞功能帶來了新的策略.
[1]Bolli R,Jeroudi MO,Patel BS,et al.Direct evidence that oxygenderived free radicals contribute to postischemic myocardial dysfunction in the intact dog[J].Proc Natl Acad Sci U S A,1989,86(12):4695-4699.
[2]Cordis GA,Maulik N,Bagchi D,et al.Estimation of the extent of lipid peroxidation in the ischemic and reperfused heart by monitoring lipid metabolic products with the aid of high-performance liquid chromatography[J].J Chromatogr,1993,632(1-2):97-103.
[3]Uchida K,Stadtman ER.Modification of histidine residues in proteins by reaction with 4-hydroxynonenal[J].Proc Natl Acad Sci U S A,1992,89(10):4544-4548.
[4]Chen L,Wright LR,Chen CH,et al.Molecular transporters for peptides:delivery of a cardioprotective epsilonPKC agonist peptide into cells and intact ischemic heart using a transport system,R(7)[J].Chem Biol,2001,8(12):1123-1129.
[5]Chen CH,Budas GR,Churchill EN,et al.Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart[J].Science,2008,321(5895):1493-1495.
[6]Doser TA,Turdi S,Thomas DP,et al.Transgenic overexpression of aldehyde dehydrogenase-2 rescues chronic alcohol intake-induced myocardial hypertrophy and contractile dysfunction[J].Circulation,2009,119(14):1941-1949.
[7]Churchill EN,Disatnik MH,Mochly-Rosen D.Time-dependent and ethanol-induced cardiac protection from ischemia mediated by mitochondrial translocation of varepsilonPKC and activation of aldehyde dehydrogenase 2[J].J Mol Cell Cardiol,2009,46(2):278-284.
[8]Budas GR,Disatnik MH,Mochly-Rosen D.Aldehyde dehydrogenase 2 in cardiac protection:a new therapeutic target?[J].Trends Cardiovasc Med,2009,19(5):158-164.
[9]Ma H,Li J,Gao F,et al.Aldehyde dehydrogenase 2 ameliorates acute cardiac toxicity of ethanol:role of protein phosphatase and forkhead transcription factor[J].J Am Coll Cardiol,2009,54(23):2187-2196.
[10]Kato N,Takeuchi F,Tabara Y,et al.Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians[J].Nat Genet,2011,43(6):531-538.
[11]Vasiliou V,Nebert DW.Analysis and update of the human aldehyde dehydrogenase(ALDH)gene family[J].Hum Genomics,2005,2(2):138-143.
[12]Chen Z,Zhang J,Stamler JS.Identification of the enzymatic mechanism of nitroglycerin bioactivation[J].Proc Natl Acad Sci U S A,2002,99(12):8306-8311.
[13]Larson HN,Weiner H,Hurley TD.Disruption of the coenzyme binding site and dimer interface revealed in the crystal structure of mitochondrial aldehyde dehydrogenase“Asian”variant.J Biol Chem,2005.280(34):p.30550-6.
[14]Li Y,Zhang D,Jin W,et al.Mitochondrial aldehyde dehydrogenase-2(ALDH2)Glu504Lys polymorphism contributes to the variation in efficacy of sublingual nitroglycerin[J].J Clin Invest,2006,116(2):506-511.
[15]Li H,Borinskaya S,Yoshimura K,et al.Refined geographic distribution of the oriental ALDH2*504Lys(nee 487Lys)variant.Ann Hum Genet,2009,73(Pt 3):335-345.
[16]Koda K,Salazar-Rodriguez M,Corti F,et al.Aldehyde dehydrogenase activation prevents reperfusion arrhythmias by inhibiting local renin release from cardiac mast cells[J].Circulation,2010,122(8):771-781.
[17]Ma H,Guo R,Yu L,et al.Aldehyde dehydrogenase 2(ALDH2)rescues myocardial ischaemia/reperfusion injury:role of autophagy paradox and toxic aldehyde[J].Eur Heart J,2011,32(8):1025-1038.
[18]Bian Y,Chen YG,Xu F,et al.The polymorphism in aldehyde dehydrogenase-2 gene is associated with elevated plasma levels of highsensitivity C-reactive protein in the early phase of myocardial infarction[J].Tohoku J Exp Med,2010,221(2):107-112.
[19]Sun L,F(xiàn)erreira JC,Mochly-Rosen D.ALDH2 activator inhibits increased myocardial infarction injury by nitroglycerin tolerance[J].Sci Transl Med,2011,3(107):107-111.
[20]Gomes KM,Bechara LR,Lima VM,et al.Aldehydic load and aldehyde dehydrogenase 2 profile during the progression of post-myocardial infarction cardiomyopathy:Benefits of Alda-1[J].Int J Cardiol,2015,179:129-138.
[21]Xu F,Chen YG,Xue L,et al.Role of aldehyde dehydrogenase 2 Glu504lys polymorphism in acute coronary syndrome[J].J Cell Mol Med,2011,15(9):1955-1962.
[22]Xu F,Chen YG,Xue L,et al.The Glu504Lys polymorphism of aldehyde dehydrogenase 2 contributes to development of coronary artery disease[J].Tohoku J Exp Med,2014,234(2):143-150.
[23]Takagi S,Iwai N,Yamauchi R,et al.Aldehyde dehydrogenase 2 gene is a risk factor for myocardial infarction in Japanese men[J].Hypertens Res,2002,25(5):677-681.
[24]Lu X,Wang L,Lin X,et al.Genome-wide association study in Chinese identifies novel loci for blood pressure and hypertension[J].Hum Mol Genet,2015,24(3):865-874.
[25]Takeuchi F,Yokota M,Yamamoto K,et al.Genome-wide association study of coronary artery disease in the Japanese[J].Eur J Hum Genet,2012,20(3):333-340.
[26]Gu JY,Li LW.ALDH2 Glu504Lys polymorphism and susceptibility to coronary artery disease and myocardial infarction in East Asians:a meta-analysis[J].Arch Med Res,2014,45(1):76-83.
[27]Wang Q,Zhou S,Wang L,et al.ALDH2 rs671 Polymorphism and coronary heart disease risk among Asian populations:a meta-analysis and meta-regression[J].DNA Cell Biol,2013,32(7):393-399.
[28]Mali VR,Palaniyandi SS.Regulation and therapeutic strategies of 4-hydroxy-2-nonenal metabolism in heart disease[J].Free Radic Res,2014,48(3):251-263.
[29]Akude E,Zherebitskaya E,Roy Chowdhury SK,et al.4-Hydroxy-2-nonenal induces mitochondrial dysfunction and aberrant axonal outgrowth in adult sensory neurons that mimics features of diabetic neuropathy[J].Neurotox Res,2010,17(1):28-38.
[30]Raza H,John A.4-hydroxynonenal induces mitochondrial oxidative stress,apoptosis and expression of glutathione S-transferase A4-4 and cytochrome P450 2E1 in PC12 cells[J].Toxicol Appl Pharmacol,2006,216(2):309-318.
[31]Aberle NS,Picklo MJ,Amarnath V,et al.Inhibition of cardiac myocyte contraction by 4-hydroxy-trans-2-nonenal[J].Cardiovasc Toxicol,2004,4(1):21-28.
[32]Hill BG,Haberzettl P,Ahmed Y,et al.Unsaturated lipid peroxidation-derived aldehydes activate autophagy in vascular smooth-muscle cells[J].Biochem J,2008,410(3):525-534.
[33]Barrera G,Pizzimenti S,Dianzani MU.4-hydroxynonenal and regulation of cell cycle:effects on the pRb/E2F pathway[J].Free Radic Biol Med,2004,37(5):597-606.
[34]Chaudhary P,Sharma R,Sharma A,et al.Mechanisms of 4-hydroxy-2-nonenal induced pro-and anti-apoptotic signaling[J].Biochemistry,2010,49(29):6263-6275.
[35]Levine B,Kroemer G.Autophagy in the pathogenesis of disease[J].Cell,2008,132(1):27-42.
[36]Huang C,Yitzhaki S,Perry CN,et al.Autophagy induced by ischemic preconditioning is essential for cardioprotection[J].J Cardiovasc Transl Res,2010,3(4):365-373.
[37]Yitzhaki S,Huang C,Liu W,et al.Autophagy is required for preconditioning by the adenosine A1 receptor-selective agonist CCPA[J].Basic Res Cardiol,2009,104(2):157-167.
[38]Zhang Y,Ren J.Autophagy in ALDH2-elicited cardioprotection against ischemic heart disease:slayer or savior?[J].Autophagy,2010,6(8):1212-1213.
[39]Ge W,Ren J.mTOR-STAT3-notch signalling contributes to ALDH2-induced protection against cardiac contractile dysfunction and autophagy under alcoholism[J].J Cell Mol Med,2012,16(3):616-626.
[40]Ge W,Guo R,Ren J.AMP-dependent kinase and autophagic flux are involved in aldehyde dehydrogenase-2-induced protection against cardiac toxicity of ethanol[J].Free Radic Biol Med,2011,51(9):1736-1748.
[41]Zhang Y,Ren J.ALDH2 in alcoholic heart diseases:molecular mechanism and clinical implications[J].Pharmacol Ther,2011,132(1):86-95.
[42]Guo Y,Yu W,Sun D,et al.A novel protective mechanism for mitochondrial aldehyde dehydrogenase(ALDH2)in type i diabetes-induced cardiac dysfunction:Role of AMPK-regulated autophagy[J].Biochim Biophys Acta,2015,1852(2):319-331.
[43]Shen C,Wang C,F(xiàn)an F,et al.Acetaldehyde dehydrogenase 2(ALDH2)deficiency exacerbates pressure overload-induced cardiac dysfunction by inhibiting Beclin-1 dependent autophagy pathway[J].Biochim Biophys Acta,2015,1852(2):310-318.
[44]Zhang B,Zhang Y,La Cour KH,et al.Mitochondrial aldehyde dehydrogenase obliterates endoplasmic reticulum stress-induced cardiac contractile dysfunction via correction of autophagy[J].Biochim Biophys Acta,2013,1832(4):574-584.
[45]De Meyer GR,De Keulenaer GW,Martinet W.Role of autophagy in heart failure associated with aging[J].Heart Fail Rev,2010,15(5):423-430.
[46]Mackins CJ,Kano S,Seyedi N,et al.Cardiac mast cell-derived renin promotes local angiotensin formation,norepinephrine release,and arrhythmias in ischemia/reperfusion[J].J Clin Invest,2006,116(4):1063-1070.
[47]Robador PA,Seyedi N,Chan NY,et al.Aldehyde dehydrogenase type 2 activation by adenosine and histamine inhibits ischemic norepinephrine release in cardiac sympathetic neurons:mediation by protein kinase Cepsilon[J].J Pharmacol Exp Ther,2012,343(1):97-105.
[48]Aldi S,Takano K,Tomita K,et al.Histamine H4-receptors inhibit mast cell renin release in ischemia/reperfusion via protein kinase C epsilon-dependent aldehyde dehydrogenase type-2 activation[J].J Pharmacol Exp Ther,2014,349(3):508-517.[49]Gong D,Zhang Y,Zhang H,et al.Aldehyde dehydrogenase-2 activation during cardioplegic arrest enhances the cardioprotection against myocardial ischemia-reperfusion injury[J].Cardiovasc Toxicol,2012,12(4):350-358.
[50]Contractor H,Stottrup NB,Cunnington C,et al.Aldehyde dehydrogenase-2 inhibition blocks remote preconditioning in experimental and human models[J].Basic Res Cardiol,2013,108(3):343.
[51]Yu Y,Jia XJ,Zong QF,et al.Remote ischemic postconditioning protects the heart by upregulating ALDH2 expression levels through the PI3K/Akt signaling pathway[J].Mol Med Rep,2014,10(1):536-542.
[52]Zhang Y,Babcock SA,Hu N,et al.Mitochondrial aldehyde dehydrogenase(ALDH2)protects against streptozotocin-induced diabetic cardiomyopathy:role of GSK3beta and mitochondrial function[J].BMC Med,2012,10:40.
[53]Gomes KM,Campos JC,Bechara LR,et al.Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodelling[J].Cardiovasc Res,2014,103(4):498-508.
[54]Stachowicz A,Olszanecki R,Suski M,et al.Mitochondrial aldehyde dehydrogenase activation by Alda-1 inhibits atherosclerosis and attenuates hepatic steatosis in apolipoprotein E-knockout mice[J].J Am Heart Assoc,2014,3(6):e001329.
[55]Luo XJ,Liu B,Ma QL,et al.Mitochondrial aldehyde dehydrogenase,a potential drug target for protection of heart and brain from ischemia/reperfusion injury[J].Curr Drug Targets,2014,15(10):948-955.
[56]Xue L,Xu F,Meng L,et al.Acetylation-dependent regulation of mitochondrial ALDH2 activation by SIRT3 mediates acute ethanol-induced eNOS activation[J].FEBS Lett,2012,586(2):137-142.
[57]Mukamal KJ,Jensen MK,Gronbaek M,et al.Drinking frequency,mediating biomarkers,and risk of myocardial infarction in women and men[J].Circulation,2005,112(10):1406-1413.
[58]Li RJ,Ji WQ,Pang JJ,et al.Alpha-lipoic acid ameliorates oxidative stress by increasing aldehyde dehydrogenase-2 activity in patients with acute coronary syndrome[J].Tohoku J Exp Med,2013,229(1):45-51.
[59]He L,Liu B,Dai Z,et al.Alpha lipoic acid protects heart against myocardial ischemia-reperfusion injury through a mechanism involving aldehyde dehydrogenase 2 activation[J].Eur J Pharmacol,2012,678(1-3):32-38.
[60]Lang XE,Wang X,Zhang KR,et al.Isoflurane preconditioning confers cardioprotection by activation of ALDH2[J].PLoS One,2013,8(2):e52469.
[61]Wei SJ,Xing JH,Wang BL,et al.Poly(ADP-ribose)polymerase inhibition prevents reactive oxygen species induced inhibition of aldehyde dehydrogenase2 activity[J].Biochim Biophys Acta,2013,1833(3):479-486.
R541
A
2095-6894(2015)02-160-05
2014-12-16;接受日期:2015-01-05
龐佼佼.E-mail:pangjiaojiao2011@126.com