費雯婕,張 琳(綜述),宋光耀(審校)
(1.河北醫科大學研究生學院,石家莊050017; 2.河北醫科大學內科學教研室,石家莊 050017; 3.河北省人民醫院內分泌科,石家莊 050051)
代謝性炎癥反應與胰島素抵抗關系研究進展
費雯婕1△,張琳1(綜述),宋光耀2,3※(審校)
(1.河北醫科大學研究生學院,石家莊050017; 2.河北醫科大學內科學教研室,石家莊 050017; 3.河北省人民醫院內分泌科,石家莊 050051)
摘要:隨著糖尿病患病人數驟增、嚴重并發癥及較高的致殘率和致死率,2型糖尿病已成為重要的慢性病之一。肥胖、遺傳和環境因素被認為是2型糖尿病的主要發病因素,其與外周組織胰島素抵抗和脂肪組織炎癥狀態的發展緊密相關。肥胖者體內的炎癥反應與傳統炎癥反應不同,其在2型糖尿病的發展中具有雙重作用。該文對代謝性炎癥反應及其特征、炎癥反應相關的胰島素抵抗機制及抗炎治療新進展進行簡要綜述,以期為糖尿病的早期診治提供參考。
關鍵詞:代謝性炎癥反應;胰島素抵抗;抗炎治療
近年來2型糖尿病的發病率迅猛增加,采取積極、有效的防治措施迫在眉睫。2型糖尿病的共同發病基礎是代謝綜合征,其主要病理特征包括動脈粥樣硬化、胰島素抵抗(insulin resistance,IR)和(或)葡萄糖耐量異常等。雖然代謝綜合征發病機制尚未統一,但以骨骼肌為主的IR在代謝綜合征發病中具有重要作用。2006年,Hotamisligil[1]提出代謝性炎癥反應的概念,隨后引起廣泛關注。研究表明,代謝性炎癥反應與IR關系密切,提高對代謝性炎癥的認識是糖尿病防治的關鍵[2]。現就代謝性炎癥反應及其特征、炎癥反應相關的IR機制、炎性因子基因多態性及抗炎治療新進展等予以綜述。
1代謝性炎癥反應
肥胖相關炎癥反應發現已有100余年的歷史,首次發現于2型糖尿病患者應用阿司匹林后出現血糖水平下降[2]。1993年,研究發現,IR的肥胖大鼠脂肪組織中促炎性細胞因子、腫瘤壞死因子α(tumor necrosis factor α,TNF-α)水平升高[3],從此掀開了肥胖相關炎癥反應研究的新篇章。與紅、腫、熱、痛為特征的傳統炎癥反應不同,其主要特征為:①代謝性,即營養誘導的代謝細胞交互作用產生炎癥反應;②溫和性,即應激傳感器,如核因子κB抑制劑激酶(inhibitor of nuclear factor κB kinase,IKK)和c-Jun氨基端激酶(Jun N-terminal kinase,JNK)誘導局部炎性介質的低度產生;③改變體內環境,即改變免疫細胞的構成,形成促炎組織環境;④持續性,即炎性狀態長期維持而無明顯消退;⑤低代謝率,即炎癥反應狀態下代謝速率降低,為與傳統炎癥相區分,特命名為“代謝性炎癥”[4]。關于代謝性炎癥引起IR的反應機制,目前主要有3種假說:①Wellen等[5]認為,當食物進入體內代謝時可能會引起低度的炎癥反應,6次跨膜蛋白(STAMP2)在代謝細胞及免疫細胞內發揮免疫抑制劑的作用,進食后其表達加強,而該功能減弱后,可能會增強炎癥狀態,并可導致全身性代謝障礙(如IR和糖耐量異常);②有學者提出,在進食-饑餓周期循環中,代謝細胞內發生周期性炎癥反應,即炎癥反應隨著進食達到高峰,而隨著營養代謝而逐漸減退;然而在飲食過度或肥胖狀態下,營養攝入帶來的持續刺激引起炎癥反應的持續活化,這些低水平信號會隨時間和食物攝入而積累,逐漸損害正常的代謝途徑;當達到引起免疫細胞募集、活化的程度時,這些炎癥反應的危害性加強且代謝細胞的功能紊亂[6-7];③第3種假說認為,營養過剩信號可能會誘導病原感受器活化,正常水平的營養攝入可參與細胞內的代謝反應而使免疫應答通路處于失活狀態;病原感受器可識別生物分子(如某些特定的脂肪酸),隨著營養攝入增多,該系統的營養分子水平將升高,以至于活化病原感受器;免疫感受器活化后將對抗正常的代謝通路,阻斷營養代謝物釋放;若營養持續過剩將會活化免疫細胞,激發免疫應答通路,這些通路將抑制代謝通路,并引起營養物質累積形成惡性循環[8-11]。
2炎癥反應相關的IR分子通路
代謝信號可激活炎性細胞內信號轉導途徑,調節下游炎癥反應,如JNK、IKK及蛋白激酶R通路,而長期的低度炎癥反應將導致大量免疫細胞聚集;隨著巨噬細胞、肥大細胞及各種T細胞的聚集而改變組織環境,進一步促進炎癥反應,引起代謝細胞功能障礙[3]。JNK、IKK及蛋白激酶R可使胰島素受體底物(insulin resistance substrate,IRS)發生絲氨酸磷酸化,抑制IRS酪氨酸磷酸化并引起蛋白范素化和IRS-1的降解,從而阻斷胰島素信號轉導[12]。此外,蛋白激酶R可負向調節翻譯起始因子活性,從而抑制一般的轉錄活動并影響內質網功能[3]。其他重要的調節因素與細胞因子及胰島素信號轉導抑制劑相關,包括細胞因子信號抑制劑1、3和一氧化氮[4]。細胞因子信號抑制蛋白由炎癥狀態中的白細胞介素(interleukin,IL)6/脂肪因子誘導產生,進而誘導IRS蛋白發生遍蛋白化和降解作用[13]。IRS的降解同樣和一氧化氮相關,一氧化氮這種內源性信號轉導分子,由一氧化氮合酶產生,而后者可被大量炎性細胞因子激活。一氧化氮合酶的活化導致IRS信號轉導主要調節因素磷脂酰肌醇3-激酶(phosphoinositide-3-kinase,PI3K)/蛋白激酶B(protein kinase B,Akt)的活性減低,反過來阻斷了胰島素信號轉導活動[14]。核因子κB通路在肝臟內炎癥誘導的IR中尤為重要,IKKβ的過度活化使糖耐量、胰島素敏感性下降,并使肝臟自身的胰島素信號轉導減弱;同時,胰島素信號轉導的調節還與其他多種因素(如細胞因子)相關,尤其是TNF-α和IL-6,其本質是和脂質代謝及脂肪生成相關[15]。Randle等[16]首次提出了肥胖和IR之間的關系,指出IR是高濃度非酯化脂肪酸與高血糖氧化代謝作用失衡的結果。據此認為,非酯化脂肪酸是調節靶組織代謝功能的一種重要的內分泌因素。Shulman[17]最近提出,非酯化脂肪酸可能和其他代謝產物(包括乙酰輔酶A、神經酰胺、二酰甘油等)共同作為信號分子,通過影響IKKβ及活化蛋白激酶C、JNK、蛋白激酶R等,抑制胰島素信號轉導[18]。磷酸化的IKKβ活化核因子κB的抑制蛋白,從而使核因子κB活化并釋放,轉運至細胞核內,核因子κB是一種刺激多種炎性調節介質生成的轉錄因子(如IL-6、IL-1、TNF-α)[19]。
3細胞因子基因多態性
隨著基因檢測水平的發展,研究發現,多種細胞因子的基因多態性與糖尿病及其并發癥之間存在相關性,編碼TNF-α的基因位于主要組織相容性復合物Ⅱ,其基因多態性和TNF-α 的表達及分泌增加相關[20-23]。編碼IL-6的基因位于第7號染色體的7p21區域,美國原著人及高加索人群體內緊靠位于174啟動區域的G→C基因多態性調節基因轉錄,這與其血漿IL-6水平升高、IR增強、葡萄糖耐量異常及最終2型糖尿病的發生相關[24]。Tonet等[25]的研究入選了2008例年齡>60歲的巴西婦女,發現174G→C多態性與心血管疾病患病風險增高相關。而在日本2型糖尿病患者的研究中,IL-6 基因啟動區域的634C→G多態性與糖尿病腎病的進展相關[26]。TGF-β1的編碼基因位于第6號染色體的6q11~q21區域,該基因的Tyr81His、Thr263Ile和Arg25Pro經研究發現和2型糖尿病發病及其并發癥有關聯;IL-10的基因位于第1號染色體上,該基因啟動區域的多態性可能會影響其轉錄,降低IL-10水平,從而加劇炎癥狀態[27-28]。Ezzidi等[29]研究發現,在突尼斯人群中,2型糖尿病患者發生腎臟病變與IL-10 基因的1082、592位點多態性相關,但該研究未發現819位點的多態性和2型糖尿病存在相關性。
4抗炎治療的重要性
研究發現,炎性因子拮抗劑可改善胰島素敏感性,如肥胖的2型糖尿病患者給予TNF-α拮抗劑依那西普治療后,出現血糖下降、高分子量脂聯素水平升高[30];同樣,IL-1拮抗劑治療也可改善血糖,并可增強β細胞的胰島素分泌功能[31]。靶向調節炎性介質上游激酶的活化可能比單獨干預已知的炎性介質更有效,如JNK抑制劑可明顯改善糖耐量及胰島素敏感性[32-33]。而在細胞水平上通過調控免疫細胞的免疫療法也可改善糖代謝,如選擇性剔除肥胖小鼠體內多種免疫細胞(如CD11免疫細胞、T細胞的不同亞群、肥大細胞等)可改善其體內代謝狀態,這有望成為肥胖相關疾病治療的新方法[34-36]。最近的研究發現,給予肥胖小鼠兩種不同的伴隨分子治療,可出現代謝組織內質網應激減弱、糖耐量及胰島素敏感性明顯加強,并伴有JNK活性減弱[37],因此控制內質網應激也有可能成為新的治療干預靶點。此外,通過飲食攝入具有抗炎作用的營養物質成為另一個治療方向,研究發現,ω-3多不飽和脂肪酸的攝入可改善炎癥性疾病(如心血管疾病、動脈粥樣硬化等)[38]。炎癥反應是機體應對病原或損傷的一種宿主反應,完全去除炎癥反應信號可能會使機體的疾病易患性增強[3]。目前認為肥胖者體內炎癥反應是由營養信號過剩引起,因此單純抑制炎性介質并不能去除與代謝信號相關的營養過剩或伴隨的細胞器功能障礙。若炎癥反應調節細胞對營養過剩的反應并進而破壞胰島素敏感性,則抑制炎癥反應可能有效。最有效的治療策略應該解決根本原因和慢性代謝疾病導致的炎癥反應,并在不破壞整體免疫反應的基礎上集中于正確的機制靶點。
5小結
隨著研究深入,促炎細胞因子成為炎癥反應和IR之間的樞紐。然而,將促炎因子指標變化作為2型糖尿病診斷或預后判斷的依據應謹慎,因為其水平可受到其他多種因素的影響(如感染、自身免疫疾病等)。而理論上,基因構成是固定的,基因多態性與2型糖尿病之間的關系不受其他風險因素的干擾,因此促炎及抗炎細胞因子的基因多態性分析可能會成為評估2型糖尿病發病風險及預防并發癥的重要方法。而抗炎治療在代謝類疾病防治中的巨大潛能仍需進一步研發。
參考文獻
[1]Hotamisligil GS.Inflammation and metabolic disorders[J].Nature,2006,444(7121):860-867.
[2]Shoelson SE,Lee J,Goldfine AB.Inflammation and insulin resistance[J].J Clin Invest,2006,116(7):1793-1801.
[3]Hotamisligil GS,Shargill NS,Spiegelman BM.Adipose expression of tumor necrosis factor-alpha:direct role in obesity-linked insulin resistance[J].Science,1993,259(5091):87-91.
[4]Gregor MF,Hotamisligil GS.Inflammatory mechanisms in obesity[J].Annu Rev Immunol,2011,29:415-445.
[5]Wellen KE,Fucho R,Gregor MF,etal.Coordinated regulation of nutrient and inflammatory responses by STAMP2 is essential for metabolic homeostasis[J].Cell,2007,129(3):537-548.
[6]Cani PD,Amar J,Iglesias MA,etal.Metabolic endotoxemia initiates obesity and insulin resistance[J].Diabetes,2007,56(7):1761-1772.
[7]Erridge C,Attina T,Spickett CM,etal.A high-fat meal induces low-grade endotoxemia:evidence of a novel mechanism of postprandial inflammation[J].Am J Clin Nutr,2007,86(5):1286-1292.
[8]Schroder K,Zhou R,Tschopp J.The NLRP3 inflammasome:a sensor for metabolic danger? [J].Science,2010,327(5963):296-
300.
[9]Saberi M,Woods NB,de Luca C,etal.Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice[J].Cell Metab,2009,10(5):419-429.
[10]Garcia MA,Gil J,Ventoso I,etal.Impact of protein kinase PKR in cell biology:from antiviral to antiproliferative action[J].Microbiol Mol Biol Rev,2006,70(4):1032-1060.
[11]Tsukumo DM,Carvalho-Filho MA,Carvalheira JB,etal.Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance[J].Diabetes,2007,56(8):1986-1998.
[12]Boura-Halfon S,Zick Y.Phosphorylation of IRS proteins,insulin action,and insulin resistance[J].Am J Physiol Endocrinol Metab,2009,296(4):581-591.
[13]Lebrun P,Van Obberghen E.SOCS proteins causing trouble in insulin action[J].Acta physiologica,2008,192(1):29-36.
[14]Zeyda M,Stulnig TM.Obesity,inflammation,and insulin resistance--a mini-review[J].Gerontology,2009,55(4):379-386.
[15]Gupta D,Krueger CB,Lastra G.Over-nutrition,obesity and insulin resistance in the development of beta-cell dysfunction[J].Curr Diabetes Rev,2012,8(2):76-83.
[16]Randle PJ,Garland PB,Hales CN,etal.The glucose fatty-acid cycle.Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus[J].Lancet,1963,1(7285):785-789.
[17]Shulman GI.Cellular mechanisms of insulin resistance[J].J Clin Invest,2000,106(2):171-176.
[18]Ye J.Mechanisms of insulin resistance in obesity[J].Front Med,2013,7(1):14-24.
[19]Qatanani M,Lazar MA.Mechanisms of obesity-associated insulin resistance:many choices on the menu[J].Genes Dev,2007,21(12):1443-1455.
[20]Kubaszek A,Pihlajamaki J,Komarovski V,etal.Promoter polymorphisms of the TNF-alpha (G-308A) and IL-6 (C-174G) genes predict the conversion from impaired glucose tolerance to type 2 diabetes:the Finnish Diabetes Prevention Study[J].Diabetes,2003,52(7):1872-1876.
[21]Kolla VK,Madhavi G,Pulla Reddy B,etal.Association of tumor necrosis factor alpha,interferon gamma and interleukin 10 gene polymorphisms with peripheral neuropathy in South Indian patients with type 2 diabetes[J].Cytokine,2009,47(3):173-177.
[22]Zeggini E,Groves CJ,Parkinson JR,etal.Large-scale studies of the association between variation at the TNF/LTA locus and susceptibility to type 2 diabetes[J].Diabetologia,2005,48(10):2013-2017.
[23]Boraska V,Rayner NW,Groves CJ,etal.Large-scale association analysis of TNF/LTA gene region polymorphisms in type 2 dia-betes[J].BMC Med Genet,2010,11:69.
[24]Susa S,Daimon M,Sakabe J,etal.A functional polymorphism of the TNF-alpha gene that is associated with type 2 DM[J].Biochem Biophys Res Commun,2008,369(3):943-947.
[25]Tonet AC,Karnikowski M,Moraes CF,etal.Association between the -174 G/C promoter polymorphism of the interleukin-6 gene and cardiovascular disease risk factors in Brazilian older women[J].Braz J Med Biol Res,2008,41(1):47-53.
[26]Kitamura A,Hasegawa G,Obayashi H,etal.Interleukin-6 polymorphism(-634C/G) in the promotor region and the progression of diabetic nephropathy in type 2 diabetes[J].Diabet Med,2002,19(12):1000-1005.
[27]Erdogan M,Cetinkalp S,Ozgen AG,etal.Interleukin-10(-1082G/A) gene polymorphism in patients with type 2 diabetes with and without nephropathy[J].Genet Test Mol Biomarkers,2012,16(2):91-94.
[28]Buraczynska M,Baranowicz-Gaszczyk I,Borowicz E,etal.TGF-beta1 and TSC-22 gene polymorphisms and susceptibility to microvascular complications in type 2 diabetes[J].Nephron Physiol,2007,106(4):69-75.
[29]Ezzidi I,Mtiraoui N,Kacem M,etal.Interleukin-10-592C/A,-819C/T and -1082A/G promoter variants affect the susceptibility to nephropathy in Tunisian type 2 diabetes (T2DM) patients[J].Clin Endocrinol (Oxf),2009,70(3):401-407.
[30]Stanley TL,Zanni MV,Johnsen S,etal.TNF-alpha antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome[J].J Clin Endocrinol Metab,2011,96(1):146-150.
[31]Malozowski S,Sahlroot JT.Interleukin-1-receptor antagonist in type 2 diabetes mellitus[J].N Engl J Med,2007,357(3):302-303.
[32]Kaneto H,Nakatani Y,Miyatsuka T,etal.Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide[J].Nat Med,2004,10(10):1128-1132.
[33]Siddiqui MA,Reddy PA.Small molecule JNK (c-Jun N-terminal kinase) inhibitors[J].J Med Chem,2010,53(8):3005-3012.
[34]Liu J,Divoux A,Sun J,etal.Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice[J].Nat Med,2009,15(8):940-945.
[35]Nishimura S,Manabe I,Nagasaki M,etal.CD8+effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity[J].Nat Med,2009,15(8):914-920.
[36]Winer S,Chan Y,Paltser G,etal.Normalization of obesity-associated insulin resistance through immunotherapy[J].Nat Med,2009,15(8):921-929.
[37]Ozcan U,Yilmaz E,Ozcan L,etal.Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes[J].Science,2006,313(5790):1137-1140.
[38]Wall R,Ross RP,Fitzgerald GF,etal.Fatty acids from fish:the anti-inflammatory potential of long-chain omega-3 fatty acids[J].Nutr Rev,2010,68(5):280-289.
Progress on the Relationship between Insulin Resistance and Metabolic Inflammation
FEIWen-jie1,ZHANGLin1,SONGGuang-yao2,3.(1.GraduateSchool,HebeiMedicalUniversity,Shijiazhuang050017,China; 2.InternalMedicineDepartmentofHebeiMedicalUniversity,Shijiazhuang050017,China; 3.DepartmentofEndocrinology,GeneralHospitalofHebei,Shijiazhuang050051,China)
Abstract:With the increasing in the number of diabetes,severe complications,higher morbidity and mortality,type 2 diabetes mellitus(T2DM) has become one of the most important chronic diseases.Obesity,genetic and environmental factors have been considered as major importance in T2DM development, which is closely correlated with development of insulin resistance in peripheral tissues and adipose tissue inflammation state.Inflammatory response in obesity individuals is different from classical inflammation,which has a dual role in the development of T2DM.Here is to make a review of the metabolic inflammation and its characteristics,IR mechanism and new advances in anti-inflammatory treatment for insulin resistance,so as to provide references for the early diagnosis and treatment of diabetes.
Key words:Metabolic inflammation; Insulin resistance; Anti-inflammatory treatment
收稿日期:2014-07-09修回日期:2014-09-29編輯:鄭雪
doi:10.3969/j.issn.1006-2084.2015.10.043
中圖分類號:
文獻標識碼:A
文章編號:1006-2084(2015)10-1846-04