魏智慧河北省南皮縣東興小學
在數學教學中運用題型培養學生的思維能力
魏智慧
河北省南皮縣東興小學
數學課程目標包括:數學素養、數學知識與技能、數學思考、解決問題、情感與態度,注重學生經驗、學科知識和社會發展三方面內容的整合,強調從學生已有的生活經驗出發,讓學生親身經歷將實際問題抽象成數學模型并進行解釋與應用的過程,進而使學生獲得對數學理解的同時,在思維能力、情感態度與價值觀等多方面得到進步和發展。
教學;培養;思維能力
開放型習題是相對有明確條件和明確結論的封閉式習題而言的,是指題目的條件不完備或結論不確定的習題。練習是數學教學重要的組成部分,恰到好處的習題,不僅能鞏固知識,形成技能,而且能啟發思維,培養能力。在教學過程中,除注意增加變式題、綜合題外,適當設計一些開放型習題,可以培養學生思維的深刻性和靈活性,克服學生思維的呆板性。
不定型開放題,所給條件包含著答案不唯一的因素,在解題的過程中,必須利用已有的知識,結合有關條件,從不同的角度對問題作全面分析,正確判斷,得出結論,從而培養學生思維的深刻性。
如:學習“真分數和假分數”時,在學生已基本掌握了真假分數的意義后,問學生:b/a是真分數,還是假分數?因a、b都不是確定的數,所以無法確定b/a是真分數還是假分數。在學生經過緊張的思考和激烈的爭論后得出這樣的結論:當b<a時,b/a為真分數;當b≥a時,b/a是假分數。這時教師進一步問:a、b可以是任意數嗎?這樣不僅使學生對真假分數的意義有了更深刻的理解,而且使學生的邏輯思維能力得到了提高。
多向型開放題,對同一個問題可以有多種思考方向,使學生產生縱橫聯想,啟發學生一題多解、一題多變、一題多思,訓練學生的發散思維,培養學生思維的廣闊性和靈活性。
如:甲乙兩隊合修一條長1500米的公路,20天完成,完工時甲隊比乙隊多修100米,乙隊每天修35米,甲隊每天修多少米?
這道題從不同的角度思考,得出了不同的解法:
(1)先求出乙隊20天修的,根據全長和乙隊20天修的可以求出甲隊20天修的,然后求甲隊每天修的。
算式是(1500-35×20)÷20
(2)先求出乙隊20天修的,根據乙隊20天修的和甲隊比乙隊多修100米可以求出甲隊20天修的,然后求甲隊每天修的。
算式是:(35×20+100)÷20
(3)可以先求出兩隊平均每天共修多少米,再求甲隊每天修多少米。
算式是:1500÷20-35
(4)可以先求出甲隊每天比乙隊多修多少米,再求甲隊每天修多少米。
算式是:100÷20+35
然后引導學生比較哪種方法最簡便,哪種思路最簡捷。
這類題,可以給學生最大的思維空間,使學生從不同的角度分析問題,探究數量間的相互關系,并能從不同的解法中找出最簡捷的方法,提高學生初步的邏輯思維能力,從而培養學生思維的廣闊性和靈活性。
多余型開放題,將題目中的有用條件和無用條件混在一起,產生干擾因素,這就需要在解題時,認真分析條件與問題的關系,充分利用有用條件,舍棄無用條件,學會排除干擾因素,提高學生的鑒別能力,從而培養學生思維的批判性。
如:一根繩子長25米,第一次用去8米,第二次用去 12米,這根繩子比原來短了多少米?
由于受封閉式解題習慣的影響,學生往往會產生一種凡是題中出現的條件都要用上的思維定勢,不對題目進行認真分析,錯誤地列式為:25-8-12或25-(8+12)。
做題時引導學生畫圖分析,使學生明白:要求這根繩子比原來短了多少米,實際上就是求兩次一共用去多少米,這里25米是與解決問題無關的條件,正確的列式是:8+12。
通過引導分析這類題,可以防止學生濫用題中的條件,有利于培養學生思維的批判性,提高學生明辨是非、去偽存真的鑒別能力。
隱藏型開放題,是解題所需的某些條件隱藏在題目的背后,如不注意容易遺漏。在解題時既要考慮問題及明確的條件,又要考慮與問題有關的隱藏著的條件。這樣有利于培養學生認真細致的審題習慣和思維的縝密性。
如:做一個長8分米、寬5分米的面袋,至少需要白布多少平方米?
解答此題時,學生往往忽視了面袋有“兩層”這個隱藏的條件,錯誤地列式為:8×5,正確列式應為:8×5×2。
解此類題時要引導學生認真分析題意,找出題中的隱藏條件,使學生養成認真審題的良好習慣,培養學生思維的縝密性。
缺少型開放題,按常規解法所給條件似乎不足,但如果換個角度去思考,便可得到解決。
如:在一個面積為12平方厘米的正方形內剪一個最大的圓,所剪圓的面積是多少平方厘米?
按常規的思考方法:要求圓的面積,需先求出圓的半徑,根據題意,圓的半徑就是正方形邊長的一半,但根據題中所給條件,用小學的數學知識無法求出。換個角度來考慮:可以設所剪圓的半徑為r,那么正方形的邊長為2r,正方形的面積為(2r)[2] =4r[2]=12,r[2]=3,所以圓的面積是3.14×3=9.42(平方厘米)。
還可以這樣想:把原正方形平均分成4個小正方形,每個小正方形的邊長就是所剪圓的半徑,設圓的半徑為r,那么每個小正方形的面積為r[2],原正方形的面積為4r[2],r[2]=12÷4,所剪圓的面積是3.14×(12÷4)=9.42(平方厘米)。
通過此類題的練習,有利于培養學生思維的靈活性,提高靈活解題的能力。
解答開放型習題,由于沒有現成的解題模式,解題時往往需要從多個不同角度進行思考和深索,且有些問題的答案是不確定的,因而能激發學生豐富的想象力和強烈的好奇心,提高學生的學習興趣,調動學生主動參與的積極性。