劉偉
凝聚是算術思維的基本形式,思維的分析相對于具體知識內容的教學而言并非某種外加的成分,而是有著重要的指導意義。
具體地說,這正是現代關于數學思維研究的一項重要成果,即指明了所謂的“凝聚”,也即由“過程”向“對象”的轉化構成了算術以及代數思維的基本形式,這也就是說,在數學特別是算術和代數中有不少概念在最初是作為一個過程得到引進的,但最終卻又轉化成了一個對象──對此我們不僅可以具體地研究它們的性質,也可以此為直接對象去施行進一步的運算。
例如,加減法在最初都是作為一種過程得到引進的,即代表了這樣的“輸入—輸出”過程:由兩個加數(被減數與減數)我們就可求得相應的和(差);然而,隨著學習的深入,這些運算又逐漸獲得了新的意義:它們已不再僅僅被看成一個過程,而且也被認為是一個特定的數學對象,我們可具體地去指明它們所具有的各種性質,如交換律、結合律等,從而,就其心理表征而言,就已經歷了一個“凝聚”的過程,即由一個包含多個步驟的運作過程凝聚成了單一的數學對象。再如,有很多教師認為,分數應當定義為“兩個整數相除的值”而不是“兩個整數的比”,這事實上也可被看成包括了由過程向對象的轉變,這就是說,就分數的掌握而言我們不應停留于整數的除法這樣一種運算,而應將其直接看成一種數,我們可以此為對象去實施加減乘除等運算。
對于所說的“凝聚”可進一步分析如下:
第一,“凝聚”事實上可被看成“自反性抽象”的典型例子,而后者則又可以說集中地體現了數學的高度抽象性,即“是把已發現結構中抽象出來的東西射或反射到一個新的層面上,并對此進行重新建構”。這正如著名哲學家、心理學家皮亞杰所指出的:“全部數學都可以按照結構的建構來考慮,而這種建構始終是完全開放的……當數學實體從一個水平轉移到另一個水平時,它們的功能會不斷地改變;對這類‘實體進行的運演,反過來,又成為理論研究的對象,這個過程在一直重復下去,直到我們達到了一種結構為止,這種結構或者正在形成‘更強的結構,或者在由‘更強的結構來予以結構化。”例如,由加法到乘法以及由乘法到乘方的發展顯然也可被看成更高水平上的不斷“建構”。
第二,以色列著名數學教育家斯法德(A.Sfard)指出,“凝聚”主要包括以下三個階段:(1)內化;(2)壓縮;(3)客體化。其中,“內化”和“壓縮”可視為必要的準備。前者是指用思維去把握原先的視覺性程序,后者則是指將相應的過程壓縮成更小的單元,從而就可從整體上對所說的過程作出描述或進行反思──我們在此不僅不需要實際地去實施相關的運作,還可從更高的抽象水平對整個過程的性質作出分析;另外,相對于前兩個階段而言,“客體化”則代表了質的變化,即用一種新的視角去看一件熟悉的事物:原先的過程現在變成了一個靜止的對象。容易看出,上述的分析對于我們改進教學也具有重要的指導意義。例如,所說的“內化”就清楚地表明了這樣一點:我們既應積極提倡學生的動手實踐,但又不應停留于“實際操作”,而應十分重視“活動的內化”,因為,不然的話,就不可能形成任何真正的數學思維。另外,在不少學者看來,以上的分析在一定程度上表明了“熟能生巧”這一傳統做法的合理性。
第三,由“過程”向“對象”的過渡不應被看成一種單向的運動;恰恰相反,這兩者應被看成同一概念心理表征的不同側面,我們應善于依據不同的情景與需要在這兩者之間作出必要的轉換,包括由“過程”轉向“對象”,以及由“對象”重新回到“過程”。
例如,在求解代數方程時,我們顯然應將相應的表達式,如(x+3)2=1,看成單一的對象,而非具體的計算過程,不然的話,就會出現(x+3)2=1=x2+6x+9=1=…這樣的錯誤;然而,一旦求得了方程的解,如x=-2和-4,作為一種檢驗,我們又必須將其代入原來的表達式進行檢驗,而這時所采取的則就是一種“過程”的觀點。
正因為在“過程”和“對象”之間存在所說的相互依賴、互相轉化的辯證關系,因此,一些學者提出,我們應把相應的數學概念看成一種“過程—對象對偶體”procept,這是由“過程”(process)和(作為對象的)“概念”(concept)這兩個詞組合而成的。,即應當認為其同時具有“過程”與“對象”這樣兩個方面的性質。再者,我們又應很好地去把握相應的思維過程(可稱為“過程—對象性思維”〔proceptual thinking〕)的以下特征:(1)“對偶性”,是指在“過程”與相應的“對象”之間所存在的相互依存、互相轉化的辯證關系;(2)“含糊性”,這集中地體現于相應的符號表達式:它既可以代表所說的運作過程,也可以代表經由凝聚所生成的特定數學對象;(3)靈活性,是指我們應根據情境的需要自由地將符號看成過程或概念。特殊地,數學中常常會用幾種不同的符號去表征同一個對象,從而,在這樣的意義上,上述的“靈活性”就獲得了更為廣泛的意義:這不僅是指“過程”與“對象”之間的轉化,而且也是指不同的“過程—對象對偶體”之間的轉化。例如,5不僅是3與2的和,也是1與4的和、7與2的差、1與5的積,等等。
綜上可見,在算術的教學中我們應自覺地應用和體現“凝聚”這樣一種思維方式。