鄭洪
在數學教學中,教師常需要組織復習,如單元復習、期中復習、期末復習等。讓學生加深鞏固已學的知識,溝通知識的內在聯系,彌補知識缺陷就是復習的主要任務,使知識系統化、條理化,并使學生能達到舉一反三、觸類旁通的目的。教師教研的重要課題:如何上好數學復習課。
一、數學復習課一般可分為四個階段
1.復習重溫階段。這部分是復習課的主體,教師必須明確在課堂上提出的復習要求和范圍,在此基礎上再組織復習,要逐題研究課本中的例題。復習時,教師應按整體組織教材結構,應按其共性組織數學的概念部分教材;按計算方法的屬性組織計算部分教材;要精心設計復習例題,以發揮例題的多功能作用。
2.梳理歸類階段。在復習中,指導學生把每一天學過的知識進行整理、歸納,以便找到知識的內在聯系,從而讓他們學到的知識不再是零散的。在培養學生獨立整理知識能力的過程中,要充分體現教師培養學生能力的示范性。在練習“小數的意義和性質”時,先說說這個小數的意義,有幾個0.1,幾個0.01。接著再出示小數:0.8,0.34,1.5,1034.34。
提問:“1034.34”小數點左邊的“3”是右邊的“3”的幾倍?小數點右邊的“4”是左邊的“4”的幾分之幾?這個小數計算單位是什么?
3.引申開拓階段。在整理歸類階段后,可以在分數除法計算的復習中出示這樣幾道試題,讓學生用不同的方法計算:
二、復習課中摒棄機械重復、盲目多練,要體現典型化、系統化、多樣性、思考性、綜合性、趣味性
1.系統性。數學復習中要循序進行練習,建立知識網絡。練習時縱橫結合,以縱向為主。明確數學知識的前后連貫性、系統性,并加以區別,獲得明確的概念。
2.典型性。復習必須抓住知識重點內容,凸顯具有典型性的例題。比如整數乘除法的計算法則與小數乘除法計算法則基本相同,在小數點的處理中,可以針對性進行以下練習:
(1)根據205×34=6970,在下列各題中確定乘積的小數點位置:2.05×3.4,20.5×3.4,205×0.034。
(2)通過商不變性質改寫成除數是整數的除法:9.8÷1.7,1.16÷0.025,0.36÷0.9。
3.多樣性。通過多樣化的復習形式,可以保持學生的注意力,提高復習興趣,還可以從各種不同角度鞏固所學的知識。采用幾種形式命題強化一種數學概念可大大增強數學的效果,如用以下幾種形式命題教學數的整數復習中互質數的概念:
(1)判斷:a和b都是質數,才是互質數。
(2)判斷:8和13( )[質數、質因數、互質數]
4.綜合性。在復習中把幾個數學概念綜合成一體。如復習六年級工程問題一課中,可出示條件“打一份稿件,單獨一個人打,甲要10小時,乙要15小時。”訓練一:能求出哪些工作效率?訓練二:如果條件不變,能求出哪些問題?
(1)兩人合打2小時,打完這份稿件的幾分之幾?
(2)兩人合打2小時,剩下這份稿件的幾分之幾?
(3)兩人合打幾小時完成?
6.趣味性。10以內加減法復習中,編排有趣味性的數學題讓學生計算,貓+兔=7,貓-兔=1,貓=?兔=?又如100以內質數的復習中,我讓學生找出一些質數,加上2還是質數有哪些?加上4還是質數有哪些?加上10還是質數有哪些?
在教學中,教師掌握提綱挈領,幫助學生理清知識脈絡,幫助學生查漏補缺、解疑釋難,根據學生在復習作業中出現的錯誤進行調整,以達到復習的目的。