999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Classification of Phase Portraits of Z2-Equivariant Planar Hamiltonian Vector Fields of Degree 7(Ⅵ)*

2015-09-13 01:40:04LiYanmei
楚雄師范學(xué)院學(xué)報 2015年9期

Li Yanmei

(School of Mathematics and Statistics,Chuxiong Normal University,Yunnan Chuxiong,675000,China)

The Hilbert’s 16th problem has been studied for more than one hundred years,but it is still a mathematics problem for twenty - one century[1].In recent decades,some progresses have been made,but there are still many works to be done.In order to use the method of disturbance to get the limit cycles,the phase portraits of undisturbed system must be obtained first.The work here is to study the phase portraits of the following Z2-equivariant planar Hamiltonian vector fields of degree 7 and get 25 new phase portraits which are different from those appeared in the papers[2-6],where k is a parameter with k > 0 and m=k+0.1,n=k+0.2.

1 Qualitative analysis of system(1)

Obviously,the system has 49 singular points:(0,0),(±1,0),(±1.2,0),(±1.3,0),(0,±k),(0,± m),(0,± n),(±1,± k),(±1.2,± k),(±1.3,± k),(±1,± m),(±1.2,± m),(±1.3,± m),(± 1,± n),(± 1.2,± n)and(± 1.3,± n).Because the system(1)is of Z2- equivariant property,we only discuss the singular points in the first and second quadrants.

The Jacobian of the system(1)is

Investigating the Jacobians of these singular points,we have no difficulty in obtaining the following results:

Theorem 1 The singular points(0,0),(±1.2,0),(0,m),(±1.2,m),(±1,k),(±1.3,k),(±1,n)and(± 1.3,n)are center,and the others are saddle points.

2 The Global Phase Portraits of the System(1)

The Hamiltonian of the system(1)is

Investigating the Hamiltonians of the singular points,we get the following results.

Theorem 2 The system(1)has 25 different phase portraits,each of them corresponding to the value of k in the following ranges:(1)0 < k < 0.121978,(2)k=0.121978,(3)0.121978 < k < 0.437713,(4)k=0.437713,(5)0.437713 < k < 0.438442,(6)k=0.438442,(7)0.438442 < k < 0.545598,(8)k=0.545598,(9)0.545598 < k < 0.545936,(10)k=0.545936,(11)0.545936 < k < 1.05729,(12)k=1.05729,(13)1.05729 < k < 1.05825,(14)k=1.05825,(15)1.05825 < k < 1.05828,(16)k=1.05828,(17)1.05828 < k < 1.25187,(18)k=1.25187,(19)1.25187 < k < 1.31853,(20)k=1.31853,(21)1.31853 < k < 1.88784,(22)k=1.88784,(23)1.88784 < k < 1.9545,(24)k=1.9545,(25)k > 1.9545.

Proof We separately denote H(0,0),H(±1,0),H(±1.2,0),H(± 1.3,0),H(0,k),H(0,m),H(0,n),H(± 1,k),H(± 1,m),H(± 1,n),H(± 1.2,k),H(± 1.2,m),H(± 1.2,n),H(± 1.3,k),H(1.3,m),H(± 1.3,n)and H(x,y)by h00,ha0,hb0,hc0,h0k,h0m,h0n,hak,ham,han,hbk,hbm,hbn,hck,hcm,hcnand hxy.Obviously,hxy=hx0+h0y,ha0< hc0< hb0< 0,h0n< h0k< h0m.Since the difference of the phase portraits depends on the relations of the Hamiltonians of the singular points of the system,we only need to study the relations between the value of k and the Hamiltonians of the singular points.For the case of brevity,merely the cases(1)~(5),(11)~(15),(21)~(25)are proven here.

(1)When 0 < k < 0.121978,the values of hxysatisfy the relations

han<hak<ha0<ham<hcn<hck<hc0<hcm<hbn<hbk<hb0<hbm<h0n<h0k<h00<h0m,and the phase portraits of system(1)is displayed by Fig.1(1).

(2)When k=0.121978,h0m=0,and the values of hxysatisfy the relations

han<hak<ha0=ham<hcn<hck<hc0=hcm<hbn<hbk<hb0=hbm<h0n<h0k<h00=h0m,hence,the phase portraits of system(1)is displayed by Fig.1(2).

(3)When 0.121978 < k < 0.437713,the values of hxysatisfy the relations

han<hak<ham<ha0<hcn<hck<hcm<hc0<hbn<hbk<hbm<hb0<h0n<h0k<h0m<h00,and the phase portraits of system(1)is displayed by Fig.1(3).

(4)When k=0.437713,hc0=hbn,and the values of hxysatisfy the relations

han<hak<ham<ha0<hcn<hck<hcm<hc0=hbn<hbk<hbm<hb0<h0n<h0k<h0m<h00,hence,the phase portraits of system(1)is displayed by Fig.1(4).

(5)When 0.437713 < k < 0.438442,the values of hxysatisfy the relations

han<hak<ham<ha0<hcn<hck<hcm<hbn<hc0<hbk<hbm<hb0<h0n<h0k<h0m<h00,and the phase portraits of system(1)is displayed by Fig.1(5).

(11)When 0.545936 < k < 1.05729,the values of hxysatisfy one of the following relations

han<hak<ham<hcn<hck<hcm<hbn<hbk<hbm<ha0<hc0<hb0≤h0n<h0k<h0m<h00,

han<hak<ham<hcn<hck<hcm<hbn<hbk<hbm<ha0<hc0<h0n<hb0≤h0k<h0m<h00,

han<hak<ham<hcn<hck<hcm<hbn<hbk<hbm<ha0<hc0<h0n<h0k<hb0≤h0m<h00,

han<hak<ham<hcn<hck<hcm<hbn<hbk<hbm<ha0<hc0<h0n<h0k<h0m<hb0<h00,where hb0=h0nas k=1.05702,hb0=h0kas k=1.05705,bb0=h0mas k=1.05717,so the phase portrait is displayed by Fig.1(11).

(12)When k=1.05729,we have hc0=h0n,the values of hxysatisfy the relations

han<hak<ham<hcn<hck<hcm<hbn<hbk<hbm<ha0<hc0=h0n<h0k<h0m<hb0<h00,and the phase portrait is displayed by Fig.1(12).

(13)When1.05729 < k < 1.05825,the Hamiltonians of the singular points satisfy one of the following relations

han<hak<ham<hcn<hck<hcm<hbn<hbk<hbm<ha0<h0n<hc0≤h0k<h0m<hb0<h00,

han<hak<ham<hcn<hck<hcm<hbn<hbk<hbm<ha0<h0n<h0k<hc0≤h0m<hb0<h00,

han<hak<ham<hcn<hck<hcm<hbn<hbk<hbm<ha0<h0n<h0k<h0m<hc0<hb0<h00,where h0k=hc0as k=1.05732,h0m=hc0as k=1.05744,and the phase portrait is displayed by Fig.1(13).

(14)When k=1.05825,we get ha0=h0n,and the Hamiltonians of the singular points satisfy the relations

han<hak<ham<hcn<hck<hcm<hbn<hbk<hbm<ha0=h0n<h0k<h0m<hc0<hb0<h00,so the phase portrait is displayed by Fig.1(14).

(15)When 1.05825 < k < 1.05828,the Hamiltonians of the singular points satisfy the relations

han<hak<ham<hcn<hck<hcm<hbn<hbk<hbm<h0n<ha0<h0k<h0m<hc0<hb0<h00,and the phase portrait is displayed by Fig.1(15).

(21)When1.31853 < k < 1.88784,the Hamiltonians of the singular points satisfy one of the following relations

han<hak<ham≤hcn<hck<hbn<hbk<hcm<hbm<h0n<h0k<h0m<ha0<hc0<hb0<h00,

han<hak<hcn<ham≤hck<hbn<hbk<hcm<hbm<h0n<h0k<h0m<ha0<hc0<hb0<h00,

han<hak<hcn<hck<ham<hbn<hbk<hcm<hbm<h0n<h0k<h0m<ha0<hc0<hb0<h00,where ham=hcnas k=1.76678,ham=hckas k=1.83353,and the phase portrait is displayed by Fig.1(21).

(22)When k=1.88784,the Hamiltonians of the singular points satisfy the relations

han<hak<hcn<hck<ham=hbn<hbk<hcm<hbm<h0n<h0k<h0m<ha0<hc0<hb0<h00,and the phase portrait is displayed by Fig.1(22).

(23)When 1.88784 < k < 1.9545,the Hamiltonians of the singular points satisfy the relations

han<hak<hcn<hck<hbn<ham<hbk<hcm<hbm<h0n<h0k<h0m<ha0<hc0<hb0<h00,and the phase portrait is displayed by Fig.1(23).

(24)When k=1.9545,the Hamiltonians of the singular points satisfy the relations

han<hak<hcn<hck<hbn<ham=hbk<hcm<hbm<h0n<h0k<h0m<ha0<hc0<hb0<h00,and the phase portrait is displayed by Fig.1(24).

(25)When k > 1.9545,the Hamiltonians of the singular points satisfy the relations

han<hak<hcn<hck<hbn<hbk<ham<hcm<hbm<h0n<h0k<h0m<ha0<hc0<hb0<h00,and the phase portrait is displayed by Fig.1(25).

Fig.1(1)~(25)The phase portraits of Sy.(1)

Obviously,none of the phase portraits is alike those appeared in the papers[2-7],although the second equation of system(1)is the same as that in the paper[7].

[1]Steve Smale.Mathematical problems for the next century.Math.Intell.Vol.20,no.2,7—15,1998.

[2]Li Yanmei,Hu Zhao.Classification of Phase Portraits of Z2- Equivariant Planar Hamiltonian-Vector Field of Degree 7(Ⅰ)[J].Journal of Chuxiong Normal University,2012,27(6):1—5.

[3]Li Yanmei.Classification of Phase Portraits of Z2-Equivariant Planar Hamiltonian Vector Field of Degree 7(Ⅱ)[J].Journal of Chuxiong Normal University,2012,27(9):1—5.

[4]Li Yanmei.Classification of Phase Portraits of Z2-Equivariant Planar Hamiltonian Vector Field of Degree 7(Ⅲ)[J].Journal of Chuxiong Normal University,2013,28(9):1—4.

[5]Li Yanmei.Global Phase Portraits and Classification of Z2-Equivariant Planar Hamiltonian Vector Fields of Degree 7 with infinite singular points(Ⅰ)[J].Journal of Chuxiong Normal University,2014,29(3):1—4.

[6]Li Yanmei.Classification of Phase Portraits of Z2-Equivariant Planar Hamiltonian Vector Field of Degree 7(Ⅳ)[J].Journal of Chuxiong Normal University,2014,29(9):1—5.

[7]Li Yanmei.Classification of Phase Portraits of Z2-Equivariant Planar Hamiltonian Vector Field of Degree 7(Ⅴ)[J].Journal of Chuxiong Normal University,2015,30(6):1—6.

主站蜘蛛池模板: 国产精品思思热在线| 一区二区在线视频免费观看| 免费在线观看av| 伊人久热这里只有精品视频99| 男女精品视频| 久久人人爽人人爽人人片aV东京热 | 国产一级视频在线观看网站| 精品视频一区在线观看| 国产在线观看一区精品| 天堂在线视频精品| 自慰高潮喷白浆在线观看| 国内精品久久九九国产精品| 亚洲视频色图| 国产成人高清在线精品| 亚洲男人的天堂视频| 国产成人免费手机在线观看视频| 国产91麻豆免费观看| 久久特级毛片| 久久无码免费束人妻| 欧美午夜网| 国产成人精品三级| 婷婷丁香在线观看| 国产主播在线一区| 91精品视频在线播放| 四虎永久免费在线| 东京热一区二区三区无码视频| 亚洲性视频网站| 韩日午夜在线资源一区二区| 欧美a网站| 蜜桃臀无码内射一区二区三区 | 亚洲成人一区在线| 亚洲成人网在线播放| 91亚洲精品第一| 麻豆国产在线不卡一区二区| 亚洲精品无码专区在线观看| 国产无码在线调教| 无码福利日韩神码福利片| 72种姿势欧美久久久大黄蕉| 亚洲欧美综合精品久久成人网| 91精品伊人久久大香线蕉| 成年人国产网站| AV在线麻免费观看网站| 日本在线欧美在线| 最新国产你懂的在线网址| 欧美精品另类| 午夜国产精品视频| 久久综合五月| 国产哺乳奶水91在线播放| 精品人妻AV区| 91亚洲免费视频| 成人a免费α片在线视频网站| 国产91av在线| 天天婬欲婬香婬色婬视频播放| 亚洲精品国产首次亮相| 91午夜福利在线观看| 亚洲性色永久网址| a级毛片免费网站| 国产综合在线观看视频| 丰满人妻一区二区三区视频| 黄色网页在线观看| 亚洲一级毛片免费看| 精品国产网| 99久久国产综合精品2020| 日本一区二区三区精品AⅤ| 无码日韩人妻精品久久蜜桃| 99re精彩视频| 在线观看免费国产| 亚洲一区无码在线| 天天摸夜夜操| 超清无码一区二区三区| 亚洲区视频在线观看| 女人18一级毛片免费观看| 99精品伊人久久久大香线蕉| 国产精品视频久| 秋霞午夜国产精品成人片| 五月激激激综合网色播免费| 亚洲一区毛片| 国产拍揄自揄精品视频网站| 91口爆吞精国产对白第三集| 日韩不卡高清视频| 国产在线视频福利资源站| 黄色网在线免费观看|