999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一類錐約束多目標優化問題的高階對偶研究

2015-10-14 02:15:40李紅梅高英
純粹數學與應用數學 2015年1期
關鍵詞:優化模型

李紅梅,高英

(重慶師范大學數學學院,重慶 400047)

一類錐約束多目標優化問題的高階對偶研究

李紅梅,高英

(重慶師范大學數學學院,重慶400047)

在一類錐約束單目標優化問題的一階對偶模型基礎之上,建立了錐約束多目標優化問題的二階和高階對偶模型.在廣義凸性假設下,給出了弱對偶定理,在Kuhn-Tucker約束品性下,得到了強對偶定理.最后,在弱對偶定理的基礎上,利用Fritz-John型必要條件建立了逆對偶定理.

錐約束多目標優化;廣義凸;對偶定理

1 引言

對偶理論是多目標優化問題的主要研究內容.1961年,Wolfe[1]首次利用Kuhn-Tucker最優性條件,在凸性假設下建立了一階對偶模型并證明了弱對偶定理.隨后,為了減弱凸性假設條件,Mond和Weir[2]提出了另一種一階對偶模型,并在偽不變凸和擬不變凸假設下給出了弱對偶定理.1975年,Mangasarian[3]在一階Wolfe型對偶的基礎上通過引進二次可微函數,建立了二階和高階對偶模型.Mond和Weir[2]考慮了另一種二階對偶模型(Mond-Weir型對偶模型).隨后,許多學者開始研究各種二階和高階對偶模型[4-9].

1996年,Nanda和Das[10]考慮了如下錐約束問題(NP):

其中f:S→R,g:S→Rm,f,g分別是二次可微函數.S∈Rn是閉集且C1,C2是Rn和Rm內的非空凸錐.C?2為C2的負極錐.

Nanda和Das[10]建立了問題(NP)的四種對偶模型,在偽不變凸和擬不變凸的假設之下給出了弱對偶定理.隨后,Chandra和Abha[11]對四種模型進行了修正,并在廣義凸性假設下證明了四種對偶模型的弱對偶和強對偶定理,但并沒有給出其逆對偶定理.因此,文獻[12]中利用Fritz-John型必要條件給出了四種對偶模型的逆對偶定理.

本文是在文獻[12]的基礎之上,考慮了多目標錐約束優化問題的二階和高階對偶模型,給出并證明了相應的弱對偶,強對偶和逆對偶定理.本文結構如下:第1節,給出了一些基本知識以及錐約束多目標優化問題高階對偶模型.第2節,討論了錐約束多目標優化問題高階對偶模型的弱對偶,強對偶和逆對偶定理.第3節,給出了錐約束多目標優化問題的二階對偶模型并討論了其弱對偶,強對偶和逆對偶定理.

2 預備知識

設Rn是n維歐氏空間,Rn+是非負象限.對x,y∈Rn給出以下符號:

定義2.1[13]設S?Rn是閉集,函數f:S→R在S上關于η是高階偽不變凸的,如果對任意x,u,p∈S,有

定義2.2[13]設S?Rn是閉集,函數f:S→R在S上關于η是高階擬不變凸的,如果對任意x,u,p∈S,有

其中函數η:S×S→Rn,函數h:S×Rn→R且h關于p可微.

定義2.3[14](i)可行解稱為問題(MOP)的弱有效解,若不存在x∈S使得

對于(MOP),在文獻[11]中錐約束單目標對偶模型(D)2的基礎之上,建立如下高階對偶模型(HD):

其中,h:Rn×Rn→Rl和k:Rn×Rn→Rm是二階連續可微函數.

3 高階對偶定理

下面將討論弱對偶定理,強對偶定理和逆對偶定理.

4 二階對偶定理

下面討論問題(MOP)的高階對偶模型(HD)的特殊情況.令

則高階對偶(HD)退化為(MOP)的二階對偶模型(SD):

注4.1當h(u,p)=pT?f(u),k(u,q)=qT?g(u),l=1時,多目標高階對偶模型(HD)退化為文獻[6]中的單目標一階對偶模型(ND)2.

高階對偶模型(HD)的弱對偶定理3.1和強對偶定理3.2可分別退化為二階對偶模型(SD)的弱對偶和強對偶定理.

下面給出例子說明逆對偶定理的合理性.

正定且?yg(0,0)=0.因此定理4.3中的假設條件都滿足,故(0,0)是(MOP)的可行解.又因(λ,u,y,p=0,q=0)滿足定理4.1中的廣義凸性假設條件,因此(0,0)是(MOP)的有效解.

事實上,原問題只有(0,0)一個可行解,因此(0,0)確實是原問題(MOP)的有效解.

[1]Wolfe P.A duality theorem for nonlinear programming[J].Quart.Appl.Math.,1961,19:239-244.

[2]Mond B,Weir T.Generalized Concavity and Duality,in:S.Schaible,W.T.Ziemba(Eds),Generalized Concavity in Optimization and Economics[M].New York:Academic Press,1981.

[3]Mangasarian O L.Second and higher-order duality in nonlinear programming[J].J.Math.Anal.Appl.,1975,51:607-620.

[4]Gulati T R,Divya Agarwal.On Huard type second-order converse duality in nonlinear programming[J]. Appl.Math.ett.,2000,20:1057-1063.

[5]Yang X M,Yang X Q,Teo K L.Higher-order generalized convexity and duality in nondifferentiable multiobjective mathematical programming[J].J.Math.Anal.Appl.,2004,297:48-55.

[6]Yang X M,Yang X Q,Teo K L.Huard type second-order converse duality for nonlinear programming[J]. Appl.Math.Lett.,2005,18:205-208.

[7]Ahmad I,Husain Z,Sarita Sharma.Higher-order duality in nondifferentiable multiobjective programming[J]. Numerical Functional Analysis and Optimization,2007,28:989-1002.

[8]高英.一類多目標廣義分式規劃問題的最優性條件和對偶[J].純粹數學與應用數學,2011,27(4):476-485.

[9]高英.非可微多目標優化問題的高階逆對偶定理[J].純粹數學與應用數學,2014,30(2):136-142.

[10]Nanda S,Das L N.Pseudo-invexity and duality in nonlinear programming[J].European Journal of Operational Research,1996,88:572-577.

[11]Chandra S,Abha.A note on pseudo-invex and duality in nonlinear programming[J].European Journal of Operational Research,2000,122:161-165.

[12]Yang X M,Yang X Q,Teo K L.Converse duality in nonlinear programming with cone constraints[J]. European Journal of Operational Research,2006,170:350-354.

[13]Mond B,Zang J.Higher order invexity and duality in mathematical programming[J].European Journal of Operational Research,1998,163:357-372.

[14]Sawaragi,Yoshikazu Date.Theory of Multiobjective Optimization[M].Japan:Department of Applied Matheatics Konan Uinversity,1985.

Higher-order duality in multiobjective programming problems with cone constraints

Li Hongmei,Gao Ying

(Department of Mathematics,Chongqing Normal University,Chongqing400047,China)

In this paper,basing on the first-order dual models for single objective problems with cone constraints,we construct second-order and higher-order dual models for nonlinear multiobjective programming problems with cone constraints.And then we establish weak and strong duality theorems under generalized convexity assumptions.By using Fritz-John type necessary condition,converse duality theorems are established.

multiobjective programming problems with cone constraints,generalized convexity,duality theorems

O221.6

A

1008-5513(2015)01-0073-12

10.3969/j.issn.1008-5513.2015.01.009

2014-07-18.

國家自然科學基金(11201511);重慶市重點實驗室專項項目(CSTC,2011KLORSE03).

李紅梅(1988-),碩士生,研究方向:多目標規劃.

2010 MSC:90C32,90C46,90C47

猜你喜歡
優化模型
一半模型
超限高層建筑結構設計與優化思考
房地產導刊(2022年5期)2022-06-01 06:20:14
民用建筑防煙排煙設計優化探討
關于優化消防安全告知承諾的一些思考
一道優化題的幾何解法
由“形”啟“數”優化運算——以2021年解析幾何高考題為例
重要模型『一線三等角』
重尾非線性自回歸模型自加權M-估計的漸近分布
3D打印中的模型分割與打包
FLUKA幾何模型到CAD幾何模型轉換方法初步研究
主站蜘蛛池模板: 亚洲天堂久久久| 99热这里只有精品在线播放| 激情综合婷婷丁香五月尤物| 亚洲男人天堂网址| 婷婷开心中文字幕| 国产三级韩国三级理| AV不卡无码免费一区二区三区| 国产色偷丝袜婷婷无码麻豆制服| 中文精品久久久久国产网址| 色香蕉影院| 超碰精品无码一区二区| 国产精品亚欧美一区二区| 国产在线拍偷自揄拍精品| a亚洲天堂| AV不卡在线永久免费观看| 久久久久国产一区二区| 乱人伦99久久| 国产午夜无码专区喷水| 国产粉嫩粉嫩的18在线播放91| 91久久偷偷做嫩草影院免费看| 国产另类视频| 97免费在线观看视频| 青青热久免费精品视频6| 日韩在线欧美在线| 日本午夜影院| 欧美三级视频网站| 91国内在线视频| 国产成人一区在线播放| 免费a级毛片18以上观看精品| 亚洲欧美成人影院| 无码电影在线观看| 久久国产乱子| 日韩无码精品人妻| 国产亚洲高清在线精品99| 国产无码精品在线播放| 97se亚洲综合在线天天| 99热亚洲精品6码| 国产精品福利尤物youwu| 91色综合综合热五月激情| 又猛又黄又爽无遮挡的视频网站| 亚洲中文字幕23页在线| 亚洲男人天堂网址| 一本综合久久| 国产一级片网址| 婷婷综合在线观看丁香| 欧美啪啪网| 亚洲毛片在线看| а∨天堂一区中文字幕| 久久亚洲欧美综合| 欧美另类视频一区二区三区| 99999久久久久久亚洲| a级毛片免费在线观看| 国产丝袜无码精品| 一级毛片a女人刺激视频免费| 色综合中文字幕| 色偷偷一区二区三区| 欧美亚洲一区二区三区在线| 亚洲人成网站在线播放2019| 国产国产人免费视频成18| 国内老司机精品视频在线播出| 午夜精品福利影院| 国产亚洲欧美日韩在线观看一区二区| 精品久久久久成人码免费动漫| 亚洲一区二区三区香蕉| 亚洲精品不卡午夜精品| 六月婷婷精品视频在线观看| 亚洲日韩第九十九页| 欧美性天天| 国产精品美女自慰喷水| 欧美啪啪精品| 秘书高跟黑色丝袜国产91在线| 欧美精品aⅴ在线视频| 久久精品欧美一区二区| 国产精品亚洲五月天高清| 91在线一9|永久视频在线| 一级高清毛片免费a级高清毛片| 国产精品视频a| 日本精品αv中文字幕| 国产h视频在线观看视频| 国产主播喷水| 波多野结衣二区| 亚洲精品少妇熟女|