楊春燕++張文++付薇++王小利++鐘理++吳佳海
摘要 DNA鏈斷裂在細胞中持續發生,可導致染色體重排和基因組不穩定或細胞死亡。最常見的是DNA單鏈斷裂,單個細胞每天可成千上萬次發生,會阻礙RNA/DNA 聚合酶的反應,干擾基因轉錄和基因組復制。如果DNA單鏈斷裂沒有得到及時修復,在基因組復制過程中會演變轉變為DNA雙鏈斷裂,從而激活一系列的DNA損傷反應。在DNA的損傷修復途徑中,ADP核糖基化行使了非常重要的功能,本文將詳細闡述ADP核糖基化參與的具體DNA損傷修復途徑。
關鍵詞 ADP核糖基化;DNA損傷;修復
中圖分類號 P361.3 文獻標識碼 A 文章編號 1007-5739(2015)18-0273-02
ADP-ribosylation Signaling During DNA Damage Repair
YANG Chun-yan ZHANG Wen FU Wei WANG Xiao-li * ZHONG Li WU Jia-hai
(Guizhou Institute of Prataculture,Guiyang Guizhou 550006)
Abstract DNA damage occurs continuously,and lead to chromosome rearrangements,genome instability and cell death. The commonest DNA damage is DNA single-strand breaks,which occurs tens-of-thousands each day,which can block the progression of RNA/DNA polymerases and disrupt gene transcription and genome duplication. If not rapidly repaired,SSBs can be converted into DNA double-strand breaks(DSBs)during genome duplication,eliciting a complex series of DNA damage responses. Protein ADP-ribosylation played a key role in DNA single-and double-strand break repair pathways. This paper reviewed the exactly pathways that ADP-ribosylation signaling during DNA damage repair.
Key words ADP-ribosylation;DNA damage;repair
ADP核糖基化指的是煙酰胺腺嘌呤二核苷酸中的ADP核糖基部分與某些蛋白質的氨基酸殘基發生共價連接反應,從而影響蛋白質的功能。ADP核糖基化由ADP核糖轉移酶(ADPRTS)來完成,動物細胞有一個很大的ADP核糖轉移酶基因家族,在這個基因家族中,有的具有多聚ADP核糖基團轉移活性(poly ADP ribosylation),對底物進行多聚ADP核糖基化修飾;有的具有單一ADP核糖基團轉移活性(momo-ADP ribosylation),對底物進行單個ADP核糖基化修飾[1-3]。在DNA損傷過程中,可檢測的多聚ADP核糖基化,多聚轉移酶PARP-1占據了80%~90%。PARP-1也可以進行自身ADP核糖基化修飾,在較小程度上,也可以對其他DNA修復蛋白和組蛋白進行短暫的ADP核糖基化修飾。現將ADP參與的具體DNA損傷修復途徑介紹如下。
1 ADP核糖基化與DNA單鏈斷裂修復(SSBR)
1.1 ADP核糖基化與DNA單鏈斷裂(SSBs)
DNA單鏈斷裂是一種最常見的DNA損傷,與可遺傳的神經變性疾病密切相關[4],SSBs可由糖氧化損傷直接產生,也可由DNA堿基切除修復(BER)或DNA拓撲異構酶1(TOP1)失活間接產生。到目前為止,PARP-1在ADPRT家族中是唯一被證明參與SSBs修復過程的[5]。PARP-1是一種核定位蛋白,在遺傳穩定性、細胞抗電離輻射和烷基化損傷等方面發揮著重要功能[6-9]。PARP-1除了與其參與的DNA損傷修復過程一致的表型外,還有一些其他的表型,因為PARP-1還具有通過調整染色質結構調控基因轉錄的功能[10-11]。
PARP-1通過2個鋅指結構域結合DNA斷裂鏈,結合后,其活性將被迅速激活到500倍以上。這種結合是一個非常短暫的過程,因為其自ADP核糖基化會導致其從DNA鏈上脫離下來。多聚ADP核糖基團在幾分鐘內會被多聚ADP核糖水解酶降解。PARP-1與DNA斷裂鏈的脫離有利于其他DNA修復蛋白與斷裂鏈的結合。
1.2 ADP核糖基化與DNA單鏈斷裂修復(SSBR)
ADP核糖轉移酶的合成促進DNA單鏈斷裂修復,比如脫氧核糖分解導致的DNA單鏈氧化斷裂。由于這些斷裂在核基因組上隨機發生,需要這樣的一個感受因子去發現并修復這些斷裂。PARP-1促進SSBR的途徑之一是通過促進XRCC1的積累來發揮功能。XRCC1可與其他的SSBR酶復合體組分直接互作,可促進SSBR酶復合體的形成并維持其穩定性。XRCC1有一個BRC保守結構域,可與核糖基化的PARP結合,因此PARP通過自ADP核糖基化來促進XRCC1和其他互作的蛋白因子在DNA斷裂鏈的積累,從而完成修復過程[12]。
除了XRCC1的積累之外,染色質結構的調控也是PARP-1促進SSBR的途徑。PARP-1可通過組蛋白ADP核糖基化,組蛋白分子伴侶、染色質重塑因子的積累來調整染色質結構,通過調控基因轉錄來促進SSBR過程[13-15]。endprint
2 ADP核糖基化與DNA 復制過程中的DNA損傷修復
大量證據PARP-1參與了全基因組SSBs的修復。未修復的SSBs在細胞分裂S期,會導致復制叉的解體,從而演變成DNA雙鏈斷裂(DSBs),這需要通過同源重組(HR)的方式來進行修復,大量證據表明PARP-1在該過程發揮了重要功能。在外施喜樹堿(CPT)誘導SSBs或TOP1失活劑的情況下,PARP-1可阻止脊椎動物復制叉的解體。此外,在復制叉已經解體的情況下,PARP-1可引導對SSBs演變成的DSBs進行HR修復而不是不利于基因穩定遺傳的NHEJ(非同源重組黏性末端結合)修復。在DT40細胞中,PART-1突變體對CPT高度敏感,這種表型可在抑制KU80和Lig4基因(參與NHEJ的相關基因)的情況下得以回復。同樣,在外施PARP抑制劑的情況下,HR途徑會受到抑制,這種抑制在NHEJ相關基因突變的情況下得到恢復[16]。
3 ADP核糖基化與非同源重組黏性末端結合(NHEJ)
在NHEJ途徑中,主要依賴于NHEJ關鍵因子Ku、DNA-PKcs和Lig4,該途徑又被稱為傳統的NHEJ(C-NHEJ)途徑;除此之外,還存在另外一種A-NHEJ途徑,雖然它不是最主要的NHEJ,但其在染色體重排和基因組穩定性方面同樣發揮著重要功能[17-19]。
3.1 ADP核糖基化與C-NHEJ
多個證據表明,ADP核糖基化參與了NHEJ途徑,比如:PARP-1可以結合DSBs,并被激活;PARP-1可與Ku、DNA-PKcs直接互作;PARP-1可以招募染色體重塑酶SMARCA5/SNF2H。但在PARP-1突變體試驗中,并沒有太多的證據表明PARP-1促進了C-NHEJ途徑,也許PARP-1參與的是A- NHEJ途徑[20]。盡管PARP-1在C-NHEJ途徑中的功能未知,但在C-NHEJ過程中確實存在蛋白ADP核糖基化修飾。在參與C-NHEJ的很多蛋白,包括Ku70都存在結合單一或多聚ADP核糖基團的結構域。最近報道的APLF帶有結合多聚ADP核糖基團的PBZ結構域。APLF雖然不為NHEJ所必需,但可促進這一進程[21-26]。奇怪的是,APLF參與C-NHEJ途徑依賴的并不是PARP-1,而是PARP-3。PARP-3與PARP-1有諸多不同,比如它為DSBs所激活的程度不如PARP-1高。此外,它對靶蛋白多進行單一ADP核糖基修飾,而非PARP-1行使的多聚修飾方式[27-28]。
3.2 ADP核糖基化與A-NHEJ
相對于C-NHEJ途徑而言,PARP-1確切地參與了A-NHEJ過程[29-31]。A-NHEJ是一種不依賴于Ku和DNA-PKcs的途徑,主要包括2種方式:一種是根據DNA微同源序列利用DNA連接酶3(DNA Lig3)進行修復;另一種不依賴于DNA微同源序列利用DNA連接酶1(DNA Lig1)進行修復[32-33]。A-NHEJ可在細胞中輕易檢測到,在細胞不同周期、不同發育期動態發生,尤其在G2時期達到最高值[34-36]。A-NHEJ解釋了包括DSBs誘導的染色體易位、基因重排和端粒融合等多種現象[37-41]。PARP-1在A-NHEJ過程中,可能行使了招募DNA連接酶3進行DNA連接的功能,具體還有待研究。
4 展望
盡管在ADP核糖基化對DNA損傷修復的調控方面取得了大量的研究成果,但是在評價PARP在DNA修復中的功能時,PARP抑制劑的使用對試驗結果的準確性造成了一定的影響,因為它在試驗過程中將會導致額外的DNA損傷,這種損傷不能等價于在PARP缺失時造成的DNA損傷。同時,在DNA損傷以后,多聚ADP核糖基化的關鍵靶點現在仍然未知。隨著質譜技術的發展,將為檢測和分析多聚ADP核糖基化修飾的靶蛋白提供了強有力的工具,為揭示DNA損傷修復的奧秘提供更多的科學依據。這些研究將有助于人們了解基因突變和進化的機制。
5 參考文獻
[1] M O HOTTIGER,HASSA P O,L?證SCHER B,et al.Toward a unifiednom-enclature for mammalian ADPribosyltransferases[J].Trends in Biochem Sci,2010,35:208-219.
[2] LANGELIER M F,PASCAL J M.PARP-1 mechanism for coupling DNA damage detection to poly(ADPribose)synthesis[J].Curr Opin Struct Biol,2013,23:134-143.
[3] HASSLER M,LADURNER A G.Towards a structural understanding of PARP1 acti-vation and related signalling ADPribosyl-transferases[J].Curr Opin Struct Biol,2012,22:721-729.
[4] CALDECOTT K W.Single-strand break repair and genetic disease[J].Nat Rev Genet,2008,9:619-631.
[5] SCHREIBER V,AMé J C,DOLLé P,et al.Poly(ADPribose)polymerase-2(PARP-2)is required for efficient base excision DNA repairin assoc-iation with PARP-1 and XRCC1[J].J Biol Chem,2002,277:23028-23036.endprint
[6] MURCIA G D,MURCIA J M.Poly(ADPribose)polymerase:a molecular-nick-sensor[J].Trends Biochem Sci,1994,19:172-176.
[7] FAGAGNA F A,HANDE M P,TONG W M,et al.Functions of poly(ADPribose)polymerase in controlling telomerelength and chromosomal stability[J].Nat Genet,1999,23:76-80.
[8] SIMBULAN-ROSENTHAL C M,HADDAD B R,ROSENTHAL D S,et al.Chromosomal aberrations in PARP(-/-)mice:genome stabilizationin immortalized cells by reintroduction of poly(ADPribose)polymerase cDNA[J].Proc Nat Acad Sci USA,1999,96:13191-13196.
[9] MURCIA J M,NIEDERGANG C,TRUCCO C,et al.Requirement of poly(ADPribose)polymerase in recovery from DNA damagein mice and in cells[J].Proc Nat Acad Sci USA,1997,94:7303-7307.
[10] SANDERSON R J,LINDAHL T.Down-regulation of DNA repair synthesis at DNA single-strand interruptions in poly(ADPribose)polymerase-1 deficient murinecell extracts[J].DNA Repair(Amst.),2002,1:547-558.
[11] KRAUS W J,HOTTIGER M O.PARP-1 and gene regulation:progress and puzzles[J].Mol Aspects Med,2013,34:1109-1123.
[12] CALDECOTT K W.XRCC1 and DNA strand break repair[J].DNA Repair(Amst.),2003,2:955-969.
[13] CALDECOTT K W.Mammalian single-strand break repair:mechanisms and linkswith chromatin[J].DNA Repair(Amst.),2007,6:443-453.
[14] ILES N,RULTEN S,EL-KHAMISY S F,et al.APLF(C2orf13)is a novelhuman protein involved in the cellular response to chromosomal DNA strandbreaks[J].Mol Cell Biol,2007,27:3793-3803.
[15] RULTEN S L,LEDESMA F C,GUO L,et al.APLF(C2orf13)is a novel component of poly(ADPribose)signaling in mammalian cells[J].Mol Cell Biol,2008,28:4620-4628.
[16] CHAUDHURI A R,HASHIMOTO Y,HERRADOR R,et al.Topoisome-rase I poisoning results in PARP-mediated replicationfork reversal[J].Nat Struct Mol Biol,2012,19:417-423.
[17] CHIRUVELLA K K,LIANG Z,WILSON T E.Repair of double-strand breaks by endjoining,Cold Spring Harbor Perspect[J].Biol,2013,5:a012757.
[18] KASPAREK T R,HUMPHREY T C.DNA double-strand break repair pathways,chro-mosomal rearrangements and cancer[J].Semin Cell Dev Biol,2011,22:886-897.
[19] MLADENOV E,ILIAKIS G.Induction and repair of DNA double strand breaks:theincreasing spectrum of non-homologous end joining pathways[J].Mutat Res,2011,711:61-72.
[20] IKEJIMA M,NOGUCHI S,YAMASHITA R,et al.Thezinc fingers of human poly(ADPribose)polymerase are differentially requiredfor the recognition of DNA breaks and nicks and the consequent enzymeactiva-tion. Other structures recognize intact DNA[J].J Biol Chem,1990,265:21907-21913.endprint
[21] AHEL I,AHEL D,MATSUSAKA T,et al.Poly(ADPribose)-binding zinc finger motifs in DNA repair/checkpoint proteins[J].Nature,2008,451:81-85.
[22] EUSTERMANN S,BROCKMANN C,MEHROTRA P V,et al.Solution structures of the two PBZ domains from human APLF and theirandtheir (下轉第282頁)
(上接第274頁)
interaction with poly(ADPribose)[J].Nat Struct Mol Biol,2010,17:241-243.
[23] LI G Y,MCCULLOCH R D,FENTON A L,et al.Struc-ture and identif-ication of ADPribose recognition motifs of APLF and role in theDNA damage response[J].Proc Nat Acad Sci USA,2010,107:9129-9134.
[24] OBEROI J,RICHARDS M W,CRUMPLER S,et al.Struc-tural basis of poly(ADPribose)recognition by the multizinc binding domain ofcheck-point with forkhead-associated and RING Domains(CHFR)[J].J Biol Chem,2010,285:39348-39358.
[25] GRUNDY G J,RULTEN S L,ZENG Z,et al.APLF promotes the assem-bly and activity of non-homologous end joining pro-tein complexes[J].EMBO J,2013,32:112-125..
[26] LI S,KANNO S I,WATANABE R,et al.Polynu-cleotide kinase and aprataxin-like forkhead-associated protein(PALF)acts asboth a single-stranded DNA endonuclease and a single-stranded DNA exonu-clease and can participate in DNA end joining in a biochemical system[J].J Biol Chem,2011,286:36368-36377.
[27] LOSEVA O,JEMTH A S,BRYANT H E,et al.PARP-3 is a mono-ADPribosylase that activates PARP-1 in the absence of DNA[J].J Biol Chem,2010,285:8054-8060.
[28] COUTO C A M,WANG H Y,GREEN J C A,et al.PARP regulates nonhomologous end joining through retention of Ku at double-strand breaks[J].J Cell Biol,2011,194(3):367-375.
[29] WANG M,WU W,WU W,et al.PARP-1 and Kucompete for repair of DNA double strand breaks by distinct NHEJ pathways[J].Nucleic Acids Res,2006,34:6170-6182.
[30] AUDEBERT M,SALLES B,CALSOU P.Involvement of poly(ADPribose)polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaksrejoining[J].J Biol Chem,2004,279:55117-55126.
[31] SIMSEK D,BRUNET E,WONG S Y W,et al.DNAligase III promotes alternative nonhomologous end-joining during chromo-somal transloca-tion formation[J].PLoS Genet,2011,7:e1002080.
[32] WANG H,ROSIDI B,PERRAULT R,et al.DNAligase III as a candidate component of backup pathways of nonhomologousend joining[J].Cancer Res,2005,65:4020-4030.
[33] WU W,WANG M,WU W,et al.Repair of radiationinduced DNA double strand breaks by backup NHEJ is enhanced in G2[J].DNA Repair(Amst.),2008,7:329-338.endprint
[34] ILIAKIS G.Backup pathways of NHEJ in cells of higher eukaryotes:cell cycledependence[J].Radiother Oncol,2009,92:310-315.
[35] CHIRUVELLA K K,SEBASTIAN R,SHARMA S,et al.Time-depend-ent predominance of nonhomologous DNA end-joiningpathways during embryonic development in mice[J].J Mol Biol,2012,417:197-211.
[36] WEINSTOCK D M,BRUNET E,JASIN M.Formation of NHEJ-derived reciprocal chro-mosomal translocations does not require Ku70[J].Nat Cell Biol,2007,9:978-981.
[37] SIMSEK D,JASIN M.Alternative end-joining is suppressed by the canonical NHEJcomponent XRCC4-ligase IV during chromosomal translocation formation[J].Nat Struct Mol Biol,2010,17:410-416.
[38] BOBOILA C,JANKOVIC M,YAN C T,et al.Alternative end-joining catalyzes robust IgH locus deletions and translocationsin the combined absence of ligase 4 and Ku70[J].Proc Nat Acad Sci USA,2010,107:3034-3039.
[39] YAN C T,BOBOILA C,SOUZA E K,et al.IgH class switching and translocations use a robust non-classical end-joiningpathway[J].Nature,2007,449:478-482.
[40] SFEIR A,LANGE T D.Removal of shelterin reveals the telomere end-protectionproblem[J].Science,2012,336:593-597.
[41] ROBERT I,DANTZER F,REINA-SAN-MARTIN B.PARP1 facilitates alternative NHEJ,whereas PARP2 suppresses IgH/c-myc translocations during immunoglobulinclass switch recombination[J]. J Exp Med,2009, 206:1047-1056.endprint