孟艷雙+邢育紅

摘要:闡述了應用型人才的內涵與數學建模實踐活動的本質,分析了應用型人才培養模式下數學建?;顒釉谌瞬排囵B過程中的作用,探討了數學建模三級教學平臺的構建與實施。
關鍵詞:應用型人才;數學建模;教學平臺
中圖分類號:G642.0 ? ? 文獻標志碼:A ? ? 文章編號:1674-9324(2016)06-0035-03
一、對應用型人才內涵與數學建模實踐活動的深入認識
應用型人才是一種能將專業知識和技能應用于所從事的專業社會實踐的一種專門的人才類型,是熟練掌握社會生產或社會活動一線的基礎知識和基本技能,主要從事一線生產的技術或專業人才。在知識結構上,應用型人才更強調復合性、應用性和與時俱進,具有復合性和跨學科的特點。在能力結構上,應用型人才強調發現問題和解決問題的能力,要求具備解決復雜問題的實踐能力;在素質結構上,應用型人才直接服務于各行各業,更強調社會適應性和與社會的共處能力。應用型人才的特點:強調實踐,突出應用;終身學習,知識復合;科學態度,敢于創新;責任意識,團隊協作。
數學建模就是通過對現實問題的抽象、簡化,確定變量和參數,并應用某些“規律”建立起變量、參數間的確定的數學問題;然后求解該數學問題,最后在現實問題中解釋、驗證所得到的解的創造過程。數學建模過程可用下圖來表明:
因此,數學建?;顒邮且粋€多次循環反復驗證的過程,是應用數學的語言和方法解決實際問題的過程。數學建模是一種聯系數學與實際問題的橋梁,它突出了實踐活動的重要特點,強調人才的培養應從側重知識教育轉向側重應用能力培養。
二、應用型人才培養模式下數學建模活動在人才培養過程中的作用
應用型人才培養模式下,數學建?;顒硬粌H包括學習數學知識,展示各應用領域中的數學問題和建模方法,提高學生學習數學的積極性,更重要的是培養學生應用數學知識解決實際問題的能力,創造有利于提高學生將來從事實際工作能力的環境。數學建?;顒拥慕虒W內容和教學方法是以應用型人才培養為核心,內容取材于實際、方法結合于實際、結果應用于實際,對學生能力的培養體現在多個方面。
(一)培養學生分析問題與解決問題的能力
數學建模競賽的題目一般由工程技術、經濟管理、社會生活等領域中的實際問題簡化而成,在數學建?;顒又?,要求首先強調如何分析實際問題,如何利用所掌握的知識和對問題的理解提出合理且簡化的假設,如何將實際問題抽象為數學問題,即將實際問題“翻譯”成數學模型。其次是如何建立適當的數學模型,如何利用恰當的方法求解數學模型,以及如何利用模型結果解決實際問題。對數學模型求解后,還要用數學模型的結果解釋實際現象。這是一個雙向“翻譯”的過程,通過這個過程,讓學生體驗數學在解決實際問題中的作用,培養學生應用數學知識的意識和能力,從而提高學習數學的興趣和應用數學解決實際問題的能力。數學建模本身就是一個創新的過程并且為培養學生創新精神和創造能力提供了環境。
(二)培養學生的創造精神和創新能力
創造精神和創新能力是指利用自己已有的知識和經驗,在個性品質支持下,新穎而獨特地提出問題、解決問題,并由此產生有價值的新思想、新方法、新成果。數學建模問題的解決沒有標準答案、不局限于唯一方法,不同的假設就會產生不同的模型,同一類模型也會有很多不同的數學求解方法。數學建模的每一步都給學生留有較大的空間,在數學建?;顒又?,要鼓勵學生勤于思考、大膽實踐,不拘泥于用一種方法解決問題,嘗試運用多種數學方法描述實際問題,鼓勵學生充分發揮想象力、勇于創造新方法,不斷地修改和完善模型,不斷地積累經驗,逐步提高學生創新能力,數學建模本身就是一個創新的過程并且為培養學生創新精神和創造能力提供了環境。數學建模是培養學生創造性思維和創新精神的良好平臺。
(三)培養學生的學習探索能力
心理學家布魯納指出:探索是數學教學的生命線。培養學生的探索能力,應貫串數學教學的全過程。這一點在普通的數學課堂上往往做不到。但在數學建模的教學過程中,通常會有意識地創設探索情境,引導學生以自我為主,進行調查研究、查閱文獻、制定方案、設計實驗、構思模型、分析總結等方面獨立探索能力的訓練,促進學生創新精神、科研能力和實踐技能的培養。
(四)培養學生的洞察力和抽象概括能力
數學建模的模型假設需要根據對實際問題的觀察和分析,透過現象看本質,將錯綜復雜的實際問題簡化,再進行高度的概括,抽象出合理、簡化、可行的假設條件。數學建模促進了對學生的洞察力和抽象概括能力的培養。
(五)培養學生利用計算機解決實際問題的能力
在數學建模中,很多模型的求解都面臨著復雜的數學推導及大量的數值計算,同時所建模型是否與實際問題相吻合也常常需要通過計算或模擬來檢驗,能熟練使用計算機計算數學問題是對學生的必要要求。數學建模將數學、計算機有機地結合起來,逐步培養學生利用數學軟件和計算機解決實際問題的能力。
(六)培養學生論文寫作和語言表達的能力
數學建模的考核內容一般包括基本建模方法的掌握、簡單建模問題的求解和實際問題的解決,考核方式往往采取閉卷與開卷相結合、理論答卷與上機實驗相結合、筆試與答辯相結合的方法。因此,數學建模答卷需要學生具有一定的描述問題的能力、組織結構的能力以及文字表達的能力。而數學建模競賽成績的好壞、獎項的高低,其評定的唯一依據就是數學建模論文,假設是否合理,建模方法是否有特色,重點是否突出,模型結果是否正確,論文撰寫是否清晰等是對論文成績評定的主要標準。通過數學建模確實能培養學生的論文寫作能力和語言表達能力。
(七)培養學生的交流與合作能力和團隊精神
數學建模中的實際問題涉及多個學科領域,所需知識較多,因此集體討論、學生報告、教師點評是經常采用的教學方式。數學建模競賽活動是一個集體項目,比賽要求參賽隊在3天之內對所給的問題提出一個較為完整的解決方案,具有一定規模的建模問題一般都不可能由個人獨立完成,這就需要三個人積極配合,協同作戰,要發揮每個人的長處,互相彌補短處,是培養學生全局意識、角色意識、合作意識的過程,也是一個塑造學生良好個性的過程。在此過程中,既要發揮好學生各自特點,又要有及時妥協的能力,目的是發揮整體的最好實力。作為對學生的一種綜合訓練,除了三個人都要有數學建模的基礎知識外,成員之間的討論、修改、綜合,既有分工,又有合作。只有充分的團隊合作,才能取得成功,凡是參加過競賽的每一個人都能深刻體會到這種團隊精神的重要性,認識到這一點對學生以后的成長是非常有幫助的。