馬 靜綜述, 杜聯芳審校
(1上海交通大學附屬第一人民醫院松江分院超聲科,上海 201699; 2上海交通大學附屬第一人民醫院超聲科; 3同濟大學附屬上海市東方醫院超聲科; *通訊作者, E-mail:du_lf@163.com)
?
超聲介導納米基因及藥物遞送的研究進展
馬靜1,2,3綜述, 杜聯芳2*審校
(1上海交通大學附屬第一人民醫院松江分院超聲科,上海201699;2上海交通大學附屬第一人民醫院超聲科;3同濟大學附屬上海市東方醫院超聲科;*通訊作者, E-mail:du_lf@163.com)
納米材料;藥物遞送;超聲介導
納米材料載體作為應用于當今醫藥領域的新寵,本身具有諸多的突出優勢:對人體無害作用、無免疫源性、生物可降解性、宿主細胞范圍廣泛、可承載物范圍廣泛等,而將基因或藥物用納米材料進行包載,對許多疾病進行靶向遞送實施治療已成為目前醫療研究的熱點之一[1]。
可生物降解的納米材料具有良好的生物相容性,在體內水解酶的作用下分解而吸收,經過三羧酸循環變成終產物水及二氧化碳,經肺、腎、皮膚排泄。載體釋放完畢時,載體也被同步吸收,不需取出[2],故其被視為理想的緩釋材料,應用非常廣泛。現在最常用的生物降解高分子材料是聚酯類材料[3,4],其中以聚乳酸羥基乙酸共聚物(PLGA)最為重要,它是美國FDA批準用于人體的可生物降解材料,在體內被降解成乳酸和羥基乙酸,最終代謝成水和二氧化碳,對人體無毒無害[5-7]。通過PLGA可制造多種納米微囊,包裹蛋白質和氨基酸納米藥物,基因,疫苗,抗原和生長因子等,而且改變其自身共聚物中的材料成分聚乳酸(PLA)與聚羥基乙酸(PGA)的比例,可以控制結晶性、溶解性以及材料的吸水能力,從而調節聚合物在體內降解的速率[8-10],使其降解時間滿足所包埋基因和藥物的要求[11,12]。
納米微囊的制備方法是通過所用材料、所包埋藥物性質及包載要求來選擇,目前多采用復乳法制備空白納米微囊,超聲乳化/溶劑擴散法及油化乳化法等方法來制備載藥納米微囊,對于DNA,siRNA及抗腫瘤藥如順鉑、米托蒽醌,抗寄生蟲藥如戊烷脒、阿苯達唑[13,14]的包載已取得了較為肯定的研究。材料濃度,乳化劑濃度,超聲照射的強度[15],內/外水相體積比等一些因素影響納米微囊包載藥物的包封率,而包載藥物的釋放速度通過制備過程中納米載體材料各組成成分的構成比和酸堿度來控制[16]。
納米基因或藥物遞送載體本身粒徑比毛細血管通路還小1-2個數量級,是紅細胞的1/60-1/60 000,可以跨越許多通常的障礙,甚至可以到達細胞內,將基因或藥物送到細胞或組織,從而達到良好的靶向治療的目的[17]。由于不同組織腫瘤對不同粒徑大小納米載體的通透性不同,造成納米載體遞送系統被動靶向性的差異,腎臟易代謝清除粒徑小于20-30 nm的納米載體,而粒徑為30-150 nm的納米載體易于聚集在骨髓、心臟和腎臟,肝臟和脾臟中容易聚集粒徑為150-300 nm的納米微囊[18]。
通常納米載體的遞送過程都會受到不同因素影響,大多納米微囊表面攜帶有大量負電荷,這些電荷不但影響其與一些基因藥物結合,同時限制其與許多腫瘤細胞親和[19],更令人擔心的是,進入體內的納米載體會被機體視為異物,易于被體內肝和脾中的單核吞噬細胞系統和網狀內皮系統所吞噬[20]。科研工作者發現,應用單甲醚聚乙二醇(mPEG) 對于PLGA進行修飾,一方面賦予PLGA-mPEG復合物躲避體內免疫系統清除的特性[21,22],延長納米微囊在體循環停留時間,另一方面屏蔽了PLGA表面的部分負電荷,提高納米載體對于基因的包載量,再加上聚左旋賴氨酸(PLL)結合后能明顯增加PLGA的表面正電性,PLL的氨基又能與負電性的DNA/siRNA發生靜電相互作用,進一步提高了基因包載量而改善了基因的轉染效果[23]。
基于大多數的腫瘤細胞或腫瘤血管內皮細胞表面具有異常高表達的特異性抗原或受體,在正常組織細胞的表面并不表達或低水平表達,近來科學家們已根據腫瘤細胞和正常細胞表面的抗原或受體表達的程度不同以提高主動靶向遞送效率進行了廣泛的研究[24,25]。整合素αvβ3是在多種惡性腫瘤細胞表面或腫瘤組織新生血管內皮細胞上有高水平表達的受體,而正常組織的細胞或成熟血管內皮細胞則無表達或幾乎不能被探及,含精氨酸-甘氨酞-天冬氨酸(Arg-Gly-AsP,RGD)序列的配基類似物修飾mPEG-PLGA-PLL聚合物材料可作為拮抗劑與整合素αvβ3進行競爭性結合,從而實現納米載體主動靶向遞送[26]。Yoo等[27]已成功用葉酸修飾PLGA-mPEG,然后包載阿霉素制備載藥膠束。體外實驗結果表明,與沒有用葉酸修飾的載藥膠束相比,用葉酸修飾的載藥膠束能明顯增強人口腔鱗癌KB細胞對其攝取。
由于納米載藥微囊遞送效率偏低而不能滿足治療的需要是近些年來國內外納米專家所共同面臨的難題。Fuente等[28]報道了由生物黏附多聚糖舌骨酸和CS合成的一種新的DNA納米載體可以將質粒DNA遞送到角膜和結膜細胞,轉染效率約15%。Bishop[29]報道納米微囊很難穿越像玻璃體腔內由充滿蛋白多糖橋接而成的膠原纖維組成網格屏障,所以單純的納米微囊對于一些必須穿越這樣的屏障的難治性視網膜疾病的治療遇到了巨大的瓶頸,而我們熟知的“癌中之王”胰腺癌,由于其特殊的病理解剖結構,靶向納米微囊遞送也遇到巨大阻力,研究者報道[30],正常胰腺周圍為疏松結締組織,無明確被膜結構,胰腺小葉間隙是胰腺血液、神經、淋巴出入胰腺實質的通路,其組織結構為疏松結締組織,與胰腺周圍的疏松結締組織和腹膜后疏松結締組織相連續,而胰腺癌組織周圍為致密結締組織,離病變胰腺組織越近程度越明顯,而小葉間隙變化為大量纖維組織及淋巴細胞浸潤,單純的載藥納米微囊很難進入到胰腺癌組織中去,作為非病毒性載體的納米微囊,與其他載體一樣存在轉染效率偏低的缺點,如何進一步增加納米粒子的藥物遞送效率將是產生更好治療效果的關鍵。
3.1超聲靶向微泡破裂(ultrasound targeted microbubble destruction,UTMD)作用機制
UTMD作用機制包括:目前比較公認的“細胞打孔”效應,它是指超聲輻照微泡破裂后產生的微環流、微射流致使細胞膜產生微米級或納米級的瞬時孔,納米微囊通過聲孔進入細胞進行基因及藥物遞送[31-33];此外超聲的作用使細胞內產生氧自由基,激活了囊胞介導的細胞膜修復轉運機制,通過增加胞吞作用促進納米微囊的細胞攝取從而增加了細胞膜的通透性,促進納米微囊的細胞攝取[34,35]。受超聲輻照區域吸收了超聲波能量使局部瞬時溫度升高影響了細胞膜磷脂雙分子層的流動性,改變了細胞膜的通透性[36]。盡管超聲和微泡遞送的機制尚沒有完全搞清楚,UTMD仍在增強眼、腫瘤、骨骼肌、心臟、骨髓干細胞等許多領域藥物和基因的遞送方面發揮了較為確定的作用[28,37-43]。
3.2UTMD介導納米微囊遞送載體實施治療
作為卵巢癌一線治療藥物的紫杉醇,治療效果一直以來因其嚴重的不良反應而受到影響,Liu等[37]發現在UTMD介導之下,枝接LHRHa 包載PTX的微囊載體,能有效地增強抗胰腺癌的治療效果。Hauff等[38]利用充氣納米粒包載pU T651-MB質粒聯合UTMD治療大鼠CC531(結腸癌細胞)肝腫瘤,發現基因表達明顯增加,應用抑癌基因p16質粒治療荷Capan1腫瘤(人胰腺癌細胞株),結果顯示UTMD可使治療基因定向釋放,有效抑制腫瘤生長。杜晶等[39]報道超聲和/或微泡可以安全有效地增強載siRNA納米粒子遞送到RPE細胞,在保持較高細胞攝取率的同時,可有效降低納米粒的劑量,通過大鼠體內及體外試驗得出了超聲輻照增強載Cy3-siRNA納米粒子遞送最佳參數設置條件。Ling等[40]通過UTMD介導間充質干細胞干預心肌微循環的試驗研究,觀察左室后壁心肌梗死區,在優化后UTMD條件作用下心肌微循環明顯改善。Chappell等[41]證實UTMD可以有效地使載成纖維細胞生長因子-2的PLGA納米粒子通過血管沉積在大鼠的肌肉組織。Hosseinkhani 等[42]研究發現利用經聚乙二醇(PEG)修飾的陽離子葡聚糖聯合超聲照射可將質粒DNA高效、靶向地傳輸至纖維肉瘤。Rapoport等[43]制備載藥多聚物微球和納米微泡,利用UTMD介導多柔比星對乳腺癌移植瘤進行治療,發現靜脈注射的載多柔比星微球可被超聲輻照釋放出來并選擇性滲透至腫瘤間質中,致使腫瘤組織萎縮。
利用UTMD靶向納米遞送系統來遞送藥物,在提高藥物在體內靶組織的聚集濃度、增強局部藥物效能同時,減少全身用藥劑量及納米微囊用量,而且通過對藥物進行包載,還可以濃縮藥量和減少給藥的次數[44],尤其對于難以攻克的腫瘤的治療是一種有潛力的治療方法。
UTMD介導靶向納米微囊載體抗腫瘤治療的關鍵過程能夠被可視化將是實現特異性的腫瘤診療一體化的關鍵,以SonoVue為代表的脂質微泡是目前最常用的超聲對比顯影劑,其作為一種優良的血池示蹤劑,顯像效果已經不言而喻。它對于人體完全無毒、無副作用,在臨床廣泛應用,到目前為止,在肝臟、腎臟、甲狀腺、乳腺、心臟及其血管等組織應用已經比較成熟[45-48],尤其對于腫瘤的微循環的顯示和分析具有獨特的優勢。目前的研究報道[49],微米級超聲造影劑通過微泡的共振作用致非線性諧波而產生超聲造影顯像,同時在安全的超聲條件設置的情況下,微泡破裂可以產生可逆性的聲孔效應,幫助藥物從血液進入到細胞間質以及細胞核,同時增強血管通透性,利于藥物在組織沉積。各種靶向的配體也可以連接到微泡的表面,而形成微泡的特異性顯像。這種技術也非常有發展潛力,但是微米級超聲造影劑,是在有血液灌注的情況下,二次諧波而產生增強的對比成像效果,在無灌注區則幾乎沒有對比顯像。作為乏血供的胰腺惡性腫瘤,常規的微米級超聲造影劑不能滿足其顯像診斷的要求,新型的納米級超聲造影劑的研發是超聲造影技術發展的趨勢。超聲納米造影劑具有不同于微泡造影劑的特點[50-52]:外殼較堅固,在超聲振蕩顯像的同時,納米粒本身不容易變形,空氣中暴露及血流的剪切力作用下不易破裂,耐熱性質相對穩定,抗壓能力較強,同時它也具有一些不足的地方:不像微泡有自然的較強回聲,背向散射能力偏差,因此需要一個較高濃度的蓄積才可以達到比較好的顯像效果,但它包載和攜帶藥物進行治療的能力較強,因此靶向多功能納米診療體針對難治型腫瘤等疾病不失為一種具有良好發展前景的新輔助診療方法。
[1]Eldar-Boock A,Miller K,Sanchis J,etal.Integrin-assisted drug delivery of nanoscaled polymer therapeutics bearing paclitaxel[J].Biomaterials,2011,32(15):3862-3874.
[2]Jere D,Jiang HL,Arote R,etal.Degradable polyethylenimines as DNA and small interfering RNA carriers[J].Expert Opin Drug Deliv,2009,6(8):827-834.
[3]Nounou MI,Emmanouil K,Chung S,etal.Novel reducible linear L-lysinemodified copolymers as efficient nonviral vectors[J].J Control Release,2010,143(3):326-334.
[4]馬利敏,張強,李玉珍.載多肽和蛋白質藥物的納米粒給藥系統的研究進展[J].中國藥學雜志,2000,35(7):437-440.
[5]Duan Y,Xu J, Lin Y,etal.A preliminary study on MeO-PEG-PLGA-PEG-OMe nanoparticles as intravenous carriers[J].J Biomed Mater Res A,2008,87(2):515-523.
[6]Brazeau GA,Sciame M,Suwayeh SA,etal.Evaluation of PLGA microsphere size effect on myotoxicity using the isolated rodent skeletaI muscle modeI[J].Pharm Dev Technol,1996,1(3):279-283.
[7]Kang BC,Kang KS,Lee YS.Biocompatibility and long-term toxicity of lnnoPol implant,a biodegradabIe polymer scaffold[J].Exp Anim,2005,54(1):37-52.
[8]Olivier JC.Drug transport to brain with targeted nanoparticles[J].NeuroRx,2005,2(1):108-119.
[9]Kumari A,Yadav SK,Yadav SC.Biodegradable polymeric nanoparticles based drug delivery systems[J].Colloids Surf B Biointerfaces,2010,75(11):1-18.
[10]Gabler F,Frauenschuh S,Ringe J,etal.EmuIsion—based synthesis of PLGA—microspheres for the in vitro expansion of porcine chondrocytes[J].Biomol Eng,2007,24(5):515-520.
[11]Kim IS,Lee SK,Park YM,etaI.Physicochemical characterization of poly(L-lactic acid)and poly(D,L-lactide-co-glycolide)nanoparticles with polyethylenimine as gene delivery carrier[J].Int J Pharm,2005,298(11):255-262.
[12]Minuth WW,Strehl R,Schumacher K.Tissue factory:conceptual design of a modular system for the in vitro generation of functional tissues[J].Tissue Eng,2004,10(1-2):285-294.
[13]Du J,Shi QS,Sun Y,etal.Enhanced delivery of monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly l-lysine nanoparticles loading platelet-derived growth factor BB small interfering RNA by ultrasound and/or microbubbles to rat retinal pigment epithelium cells[J].J Gene Med,2011,13(6):312-323.
[14]Duncan R.Polymer conjugates as anticancer nanomedicines[J].Nature Rev Cancer,2006,6(9):688-701.
[15]Liu PF,Wang HZ,Li YG,etal.Preparation of DHAQ-loaded PLA-PLL-RGD nanoparticles and comparison of antitumor efficacy to hepatoma and breast carcinoma[J].J Macromol Sci Part A Pure Applied Chem,2009,46(10):1024-1029.
[16]李玉寶.生物醫學材料[M].北京:化學工業出版社,2003:11-12.[17]Soares PI,Machado D,Laia C,etal.Thermal and magnetic properties of chitosan-iron oxide nanoparticles[J].Carbohydr Polym,2016,149:382-390.
[18]Shao D,Li J,Zheng X,etal.Janus “nano-bullets”for magnetic targeting liver cancer chemotherapy[J].Biomaterials,2016,100:118-133.
[19]Lim EK,Chung BH,Chung SJ.Recent advances in pH-sensitive polymeric nanoparticles for smart drug delivery in cancer therapy[J].Curr Drug Targets,2016:Epub ahead of print.
[20]Liu N,Han J,Zhang X,etal.pH-responsive zwitterionic polypeptide as a platform for anti-tumor drug delivery[J].Colloids Surf B Biointerfaces,2016,145:401-409.
[21]Feng S,Nie L,Zou P,etal.Drug-loaded PLGA-mPEG microparticles as treatment for atopic dermatitis-like skin lesions in BALB/c mice model[J].J Microencapsul,2015,32(2):201-209.
[22]Shi C,Feng S,Liu P,etal.A novel study on the mechanisms of drug release in PLGA-mPEG microspheres with fluorescent drug[J].J Biomater Sci Polym Ed.2016,27(9):854-864.
[23]Diamanti E,Muzzio N,Gregurec D,etal.Impact of thermal annealing on wettability and antifouling characteristics of alginate poly-l-lysine polyelectrolyte multilayer films[J].Colloids Surf B Biointerfaces,2016,145:328-337.
[24]Noureddine A,Gary-Bobo M,Lichon L,etal.Bis-clickable mesoporous silica nanoparticles:straightforward preparation of light-actuated nanomachines for controlled drug delivery with active targeting[J].Chemistry,2016,22(28):9624-9630.
[25]Zhang X,Yang C,Zhou J,etal.Somatostatin receptor-mediated tumor-targeting nanocarriers based on Octreotide-PEG conjugated nanographene oxide for combined chemo and photothermal therapy[J].Small,2016,12(26):3578-3590.
[26]Gunaseelan S,Gunaseelan K,Deshmukh M,etal.Surface modifications of nanocarriers for effective intracellular delivery of anti-HIV drugs[J].Adv Drug Deliv Rev,2010,62(4-5):518-531.
[27]Yoo KS,Park TG.Folate receptor targeted biodegradable polymeric doxoru-bicin micelles[J].J Control Release,2004,96(2):273-283.
[28]dela Fuente M,Seijo B,Alonso MJ.Novel hyaluronic acid-chitosan nanoparticlesfor ocular gene therapy[J].Invest Ophthalmol Vis Sci,2008,49(5):2016-2024.
[29]Bishop P.The biochemical structure of mammalian vitreous[J].Eye,1996,10(Pt 6):664-670.
[30]韋軍民,徐新建,王喜艷,等.胰腺組織學特點與疾病潛在關系的分析[J].中華肝膽外科雜志,2008,14(6):414-416.
[31]Prentice P,Cushierp A,Dholakiak,etal.Membrane disruption by optically controlled microbubble cavitiation[J].Nat Phys,2005,1(2):107-110.
[32]Tachlibana K,Uchida T,Ogawa K,etal.Induction of ultrasound[J].Lancet,1999,353(9162):1409.
[33]Van Wamel A,Kooiman K,Harteveld M,etal.Vibrating microbubbles poking individual cells:Drug transfer into cells via sonoporation[J].J Control Release,2006,112(2):149-155.
[34]Juffermans LJ,Dijkmans PA,Musters RJ,etal.Transient permeabilization of cell membranes by ultrasound-exposed microbubbles is related to formation of hydrogen peroxide[J].Am J Physiol Heart Circ Physiol,2006,291(4):H1595-1601.
[35]Miller DL,Gies RA.The interaction of ultrasonic heating and cavitation in vascular bioeffects on mouse intestine[J].Ultrasound Med Biol,1998,24(1):123-128.
[36]Schlicher RK,Radhakrishna H,Tolentino TP,etal.Mechanism of intracellular delivery by acoustic cavitation[J].Ultrasound Med Biol,2006,32(6):915-924.
[37]Liu H,Chang S,Sun J,etal.Ultrasound-mediated destruction of LHRHa-targeted and paclitaxel-loaded lipid microbubbles induces proliferation inhibition and apoptosis in ovarian cancer cells[J].Mol Pharm,2014,11(1):40-48.
[38]Hauff P,Seemann S,Reszka R,etal.Evaluation of gas-filled microparticles and sonoporation as gene delivery system:feasibility study in rodent tumor models[J].Radiology,2005,236(2):572-578.
[39]Du J,Sun Y,Shi QS,etal.Biodegradable nanoparticles of mPEG-PLGA-PLL triblock copolymers as novel non-viral vectors for improving siRNA delivery and gene silencing[J].Int.J.Mol.Sci,2012,13(1):516-533.
[40]Ling ZY,Shu SY,Zhong SG,etal.Ultrasound targeted microbubble destruction promotes angiogenesis and heart function by inducing myocardial microenvironment change[J].Ultrasound Med Biol,2013,39(11):2001-2010.
[41]Chappell JC,Song J,Burke CW,etal.Targeted delivery of nanoparticles bearing fibroblast growth factor-2 by ultrasonic microbubble destruction for therapeutic arteriogenesis[J].Small,2008,4(10):1769-1777.
[42]Hosseinkhani H,Tabata Y.Ultrasound enhances in vivo tumor expression of plasmid DNA by PEG introduced cationized dextran[J].J Control Release,2005,108(2-3):540-556.
[43]Rapoport N,Gao Z,Kennedy A.Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy[J].J Natl Cancer Inst,2007,9(14):1095-1106.
[44]Zhang M,Yu WZ,Shen XT,etal.Advanced interfere treatment of diabetic cardiomyopathy rats by aFGF-Loaded heparin-modified microbubbles and UTMD technique[J].Cardiovascular Drugs Ther,2016,30(3):247-261.
[45]Zhao YZ,Lin Q,Wong HL,etal.Glioma-targeted therapy using Cilengitide nanoparticles combined with UTMD enhanced delivery[J].J Control Release,2016,224:112-125.
[46]Zhao YZ,Zhang M,Wong HL,etal.Prevent diabetic cardiomyopathy in diabetic rats by combined therapy of aFGF-loaded nanoparticles and ultrasound-targeted microbubble destruction technique[J].J Control Release,2016,223:11-21.
[47]Kopechek JA,Carson AR,McTiernan CF,etal.Ultrasound targeted microbubble destruction-mediated delivery of a transcription factor decoy inhibits STAT3 signaling and tumor growth[J].Theranostics,2015,5(12):1378-1387.
[48]Xiang X,Tang Y,Leng Q,etal.Targeted gene delivery to the synovial pannus in antigen-induced arthritis by ultrasound-targeted microbubble destructioninvivo[J].Ultrasonic,2016,65:304-314.
[49]Kang ST,Yeh CK.Ultrasound Microbubble Contrast Agents for Diagnostic and Therapeutic Applications:Current Status and Future Design[J].Chang Gung Med J,2012,35(2):125-139.
[50]Jafari S,Diou O,Mamou J,Renault G.High-frequency(20 to 40 MHz) acoustic response of liquid-filled nanocapsules[J].IEEE Trans Ultrason Ferroelectr Freq Control,2014,61(1):5-15.
[51]Hughes GA.Nanostructure-mediated drug delivery[J].Nanomedicine,2005,1:22-30.[52]Lanza GM,Trousil RL,Wallace KD,etal.In vitro characterization of a novel,tissue-targeted ultrasonic contrast system with acoustic microscopy[J].J Acoust Soc Am,1998,104(6):3665-3672.
國家自然科學基金資助項目(81271596,81171352,81501483);上海市松江區中心醫院優秀醫療人才培養計劃資助項目;松江區科技攻關資助項目
馬靜,女,1975-07生,博士,副主任醫師,E-mail:majing0709@163.com
2016-06-10
R318.08
A
1007-6611(2016)08-0779-04
10.13753/j.issn.1007-6611.2016.08.023