999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

搭建支架,步步登高*——基于整體建構的基本作圖資源整合教學

2016-04-13 08:28:23山東省濱州市北鎮中學初中部邢成云
中學數學雜志 2016年4期

☉山東省濱州市北鎮中學初中部 邢成云

?

搭建支架,步步登高*——基于整體建構的基本作圖資源整合教學

☉山東省濱州市北鎮中學初中部邢成云

*本文系山東省教學研究課題《全息教學論下的跨越式教學》(課題編號:pt-20120126)的延伸研究成果之一:基于資源整合教學的課堂設計.主持人:邢成云.

一、寫在前面

五種尺規基本作圖(除了最基本的作線段)分散于(人教版)教材的各個部分,跨越2章的空間,這種編排不利于培養學生的基本作圖技能,也不利于學生發散思維的培養.作一個角等于已知角的作圖是在八年級上冊第12章第37-38頁12.2的例1之后安排的;八年級上冊第12 章12.3一節第48頁的第一個思考之后,安排了角的平分線的作法;在八年級上冊第14章3.1.2的第62頁,通過例1安排了過直線外一點作已知直線的垂線的作圖;同一節通過例2安排了線段的垂直平分線的作圖.其順序是:作已知角→作已知角的平分線→過直線外一點作已知直線的垂線→作線段的垂直平分線.其中作垂線中的“過直線上的一點”安置在習題中,而這正是從角平分線到垂線作圖的引橋.通過各類作圖之間關聯的分析,筆者把這些基本作圖匯聚于連續的2節課內,先期的作圖不限制工具,當把全等三角形、軸對稱兩章知識完成后,集中安排了尺規作圖的學習.

本節以第一節基本作圖課(即完成了“作線段等于已知線段;作角等于已知角;作角的平分線”三類作圖的學習)為基,形成支架,然后循級而上,完善五種基本作圖,其中過直線上一點作垂線等價于作平角的角平分線,這就是本節課的邏輯起點,而后通過化歸將其他類型的作圖不斷轉化,直至完成基本作圖的整體模塊.

二、教學目標

(1)以角的平分線為先行組織者,探尋“過直線上一點作直線的垂線”的尺規作圖,繼而完成“線段的中垂線”“過直線外一點作直線的垂線”的尺規作圖,厘清邏輯順序;

(2)集中再現五種基本圖形的基本畫法,熟練掌握其技法,正確理解它們的作圖原理,在實際問題中能簡單地應用.

三、教學準備

每位同學準備一張練習紙,上有一個鈍角∠α(課始作圖用)和一個△ABC(以備后面的練習用).

四、教學過程

1.抓生長點,特殊中筑起支架

設計說明:點與直線有兩種位置關系:點在直線上、點在直線外,其中點在直線上是本節課三個作圖的基點,過直線上一點作垂線,無非是揭示一般中的特殊,去作以那一點為頂點的平角的角平分線所在直線,這是學生已有的技能,這個根基穩了,其他兩類作圖的支架就搭建起來了!

師:到現在為止,基本的尺規作圖已經完成了哪些?

生:已經學會了三個:作線段等于已知線段;作角等于已知角;作角的平分線.

師:是的,我們步步推進,已經完成了三個基本作圖,請同學們打開練習紙,用尺規作∠AOB=∠α,并作出它的角平分線.

(生作圖中)

(待學生完成后,用幾何畫板演示)師:同學們思考下面的問題:若通過直線上一點作這條直線的垂線,該如何實施?請同學們先畫出已知圖觀察,看誰最先破解這個問題.

(生思考中)

生1:我知道.

(師示意生1先不要急于發言,給其他同學思考的機會)

(師巡視中發現有一半以上的同學把思路想出來了,遂示意生1發言)

生1:從圖上看就是一個特殊的角——平角,把平角平分不就出現垂線了嗎?所以我作了平角的角平分線,再反向延長.

師:其他同學的思路怎樣?

生2:和生1思路一樣,就這么想的.

師:哦,很好,說明同學們善于利用已知處理未知問題,這在數學上叫什么?

生眾:化歸.

師:是的,這就是“化歸”的作用,把過直線上一點作直線的垂線問題轉化為作平角的角平分線問題.

(接著,師用幾何畫板展示:先測量鈍角,然后拉伸,其中有一個狀態即為平角狀態,發現此時的角平分線恰好與平角形成的直線垂直)

作法歸納(圖1):

(1)以C為圓心,適當長為半徑畫弧,交直線AB于點E、F;

圖1

(3)畫直線CD,直線CD即為所求.

2.拾級而上,開放中發現方法

設計意圖:只要把直線AB上的線段EF分離出來,立即就會發現CD就是線段EF的垂直平分線,因此,筆者通過問題引領,啟導學生觀察后發現圖中蘊含著EF的垂直平分線,然后誘導學生發現其作法,這個作法就是基于以前的經驗,當然離不開垂直平分線性質定理的逆定理的助力.

師:請同學們觀察圖1,你能發現這個圖中有哪些正確的結論?

生3:C為線段EF的中點,CD是線段EF的垂直平分線.

生4:若連接DE、DF,則△DEF為等腰三角形,滿足“三線合一”.

師:兩位同學說的都很好,誰還有說法?

生眾:沒有了.

師:就現在研究的問題,請同學們大膽設想一下,我們下一步要干什么?

生5:作一條線段的垂直平分線.

師:對,會作嗎?從圖1能獲得啟示嗎?請同學們思考.

生6:在這里,線段的中點不知道,因此,要作線段EF的垂直平分線,根據判定方法及前面的經驗,需要D那樣的點兩個,所以再找出另外一個類似的點就行了.

師:分析的非常透徹,這樣一來,剩下的任務就是找出那個類似的點,該怎么找?

生6:重復點D的找法就行.

生7:不需要,一次性畫弧就行了,在線段的上下兩方分別畫弧,兩弧就會有上下兩個交點,然后通過這兩點作直線即可.

師:請同學們判斷一下,作法是否合理?

生眾:合理不合理需要證明.

師:說得好,說明同學們有了很強的規則意識,不是看當然、想當然了,誰來說明?

生8:根據畫法,結合垂直平分線定理的逆定理,D點到線段EF兩端的距離相等,說明點D在線段EF的垂直平分線上,同理,另外一點也在線段EF的垂直平分線上,根據兩點確定一條直線可證.

師:推理充分、得體,說明這個方法可行,同學們明白這回事嗎?

生眾:明白.

師:請同學們作線段AB的垂直平分線,并梳理其作法.

已知:線段AB.

求作:線段AB的中垂線.

作法(圖2):

圖2

(2)過C、D兩點作直線.

直線CD即為所求.

3.用好支架,遷移中破解難點

設計意圖:過直線外一點作直線的垂線,這是尺規作圖的至高點,也是難點,同時也是整節課的難點所在.通過引領學生反觀圖1和圖2,發現其中垂直的端倪,探尋出其核心在于“與直線相交的那條弧”,有了這個支架,前文的作圖之法就容易發生遷移,將難點化解.

師:過直線上的點作直線的垂線及線段的中垂線的作法解決了,還剩下哪一類問題需要解決?

生9:過直線外一點作直線的垂線.

師:是的,還有點在直線外這一類情況,試試看,你會作嗎?

生10:先通過直線外一點作已知直線的平行線.

師(追問):平行線!怎么作?

生10:過這一點先任意作一直線與已知直線相交,然后以這一點為頂點作等于兩直線夾角的同位角.

師(作驚訝狀):哇,這樣一來這一條直線就是原來那一直線的平行線了,我們豈不是順便發現了“過直線外一點作已知直線的平行線”這一個新的作圖嗎?這真是“得來全不費工夫”??!

(學生自發的掌聲)

師(追問):再怎樣操作呢?

生10:接下來就是重復過直線上一點作直線的垂線的作法了.

師(面向全體追問):這樣可以嗎?

生眾:哦,可以!

師:為什么?

生眾:通過平行線的性質“同位角相等,兩直線平行”可以證明.

點評:出乎老師的預設,沒想到學生來了這么一招,縱然這一方法比較復雜,需要作“平行線”當助力,但這是學生鮮活的思路,字字句句流瀉出思維的靈動、散發出化歸的魅力,無意中撿拾到兩顆美麗的珍珠!

師:這位同學充分利用了數學上的核心思想——化歸,把這一問題轉化成已經解決的問題來處理,值得我們學習!同學們先梳理一下這個方法,并揣摩其中的道理.

(生梳理中)

師:接下來,請同學們借助圖1、圖2繼續思考,除了這一方法,誰還有其他方法?

(生沉默)

師:我們想一想剛才作垂直的方法,其關鍵在哪里?

(生思考中,陸續有三分之一的同學舉手)

生11:找到與直線相交的那條弧.

師:噢,有了這條弧,問題就變成已經解決的問題了,可那條弧該怎么畫?

生12:隨便畫就行.

生13:不能隨便,隨便畫弧不一定能與已知直線相交.

生12:哦,對,需要能與直線相交.

師:能交只是一個定性認識,具體怎樣操作?

生13:以直線外那一點為圓心,以大于這點到直線的距離的長為半徑畫弧.

生14:那樣說還不確切,應該具體找一個點,讓這個點與直線外那一點分居直線兩旁,就能保證交點的存在了.

(生眾認可)

師:生14的想法很好,比較具體,能詳細表述一下嗎?

生14:在直線AB另一側任取一點K,以點C為圓心,以CK為半徑畫弧,交直線AB于點D、E,然后按角平分線的作法操作就行.

師:好,表達清晰,下面我們一起歸納一下這一作法.

已知:直線AB和AB外一點C.

求作:AB的垂線,使它經過點C.作法(圖3):

(1)任意取一點K,使K和C在AB的兩旁;

(2)以C為圓心,CK的長為半徑作弧,交AB于點D和E;

圖3

(4)作直線CF.

則直線CF就是所求的垂線.

4.一圖“三線”,應用中突出核心

設計意圖:通過尺規作三角形的“三線段”,把五類作圖中的三種核心作圖全盤托出,既是對作圖的技法的鞏固,又是對三角形三線段的再認識,形成基本尺規作圖與概念的對接,明確高線是通過三角形的一個頂點向對邊作垂線而獲得的,是過直線外一點作垂線的應用;中線則通過作線段的中垂線先獲得中點,再與所對頂點連接而成,顯然是中垂線作圖的應用;角平分線就是地地道道的角平分線作圖.在實戰中見證學生的技法,同時通過口述作法鍛煉學生的語言轉換技能,和諧學生的動口、動手、動腦,一舉多得.

練習:如圖4的△ABC,用尺規分別作出BC邊上的高、∠B的平分線、AB邊的中線,保留作圖痕跡并口述作法.(說明:作法口述,需要同桌之間相互檢查)

圖4

學生利用練習紙獨立完成,筆者巡視、指點,整體完成不錯,有一小部分作高線有障礙,通過筆者和部分同學的幫扶基本達標.

(私下交流較多,限于篇幅,在此從略)

5.原理探尋,交流中建構體系

設計意圖:通過學生再次梳理與反思,環環相扣、一脈相承的五類基本作圖,自然可以凝聚成一個尺規作圖的群體,這個群體的攜手發力就可以解決相對復雜的作圖問題,為幾何學習開拓市場,為幾何由靜返動提供了可感的操作,力圖實現小結的點睛之用和凝聚之力.同時通過原理探尋,明確幾何原理,“知其然”的同時“知其所以然”,這樣作圖的根、脈、原理就厘得清清楚楚了.

師:至此,五種基本作圖基本達成!反躬自問,自己是否明白了作圖的方法及原理,它們之間是怎樣關聯的?請同學們理出一條線索把5種作圖歸納,可相互補充.

生15:整個作圖就是一個不斷轉化的過程.

師:是的,轉化是整節課的命脈,通過轉化讓我們不斷走向成功.

生16:截線段在每一個作圖中都有體現,我從作角等于已知角開始,再作這個角的角平分線,借助角平分線的作法,過直線上一點作直線的垂線,順接思路,作線段的垂直平分線,進一步過直線外一點作直線的垂線.

師:這是我們學習基本作圖的基本線索,表述的條理清晰,很好!我再提幾個問題請大家思考.作一個角等于已知角,用的是什么幾何原理?

生17:全等三角形的對應角相等.

師:你通過什么方法判斷它們全等?

生17:SSS.

師:作角的角平分線借助了什么原理?

生18:也是全等三角形的對應角相等.

師:通過什么方法判斷它們全等?

生18:也是SSS.

師:“過直線上一點作已知直線的垂線”的方法源于哪類作圖?

生19:就相當于作一個平角的平分線.

師:是的,通過“作一個角的平分線”的尺規作圖的支架作用,我們得出了“過直線上一點作已知直線的垂線”的方法.作線段的垂直平分線呢?

生20:這個復雜,可先分別連接圖2中的AC、BC、AD、BD,通過SSS證△ACD與△BCD全等,得∠ACD= ∠BCD,再證AB上的兩個小三角形全等即可.

生21:不用再證全等,直接說明DC是∠ACB的角平分線,用三線合一就行了.

生22:一個全等也不需要證,直接利用線段垂直平分線性質的逆定理就行,C、D兩點都在AB的中垂線上,根據兩點確定一條直線,CD當然就是AB的中垂線了!

(生22說完,有掌聲)

師:是的,三種方法都可行,但最簡單的還是生22的做法,我們面對一個問題既要發散思維,又要注意優化選擇思路.過直線外一點作直線的垂線呢?

生眾:證明思路和中垂線的一樣.

師:同學們一眼就看穿了,是的,觀察圖3可以看出思路與中垂線的證明一致.這樣一來,前面每一個作圖法的合情默認,其合理性在同學們的交流中得到了邏輯認證,現在我們心里踏實了,下一節我們將共同關注作圖在現實生活中的應用!

6.分層作業,保底中關注差異

必做題:

(1)整理5種基本作圖,寫出畫法,并體會每一個作圖之間的聯系.

(2)如圖5,已知點M、N和∠AOB,求作一點P,使P到點M、N的距離相等,且到∠AOB的兩邊的距離相等.

圖5

選做題:

如圖6,Rt△ABC中,∠ACB = 90°,∠CAB=30°,用圓規和直尺作圖,用兩種以上方法把它分成兩個三角形,且要求其中一個三角形是等腰三角形(保留作圖痕跡,不要求寫作法和證明).

圖6

設計說明:對于選做題,采用五種尺規作圖中的作線段、作線段的垂直平分線、作角平分線、作角中任何一個基本作法都可以完成目標圖形,搭建了讓學生對每種基本作圖一個思維發散的空間,是學生復習鞏固和靈活體驗五種基本作圖方法的一個好題,但根據往年的經驗,學生大都集中于畫線段的中垂線和角平分線這兩種方法,對其他方法熟視無睹,缺乏另外的作圖意向,折射出對這五種作圖法的熟練和功能理解不夠深入,還停留在一種記憶意識與技術層面,沒深入到理性的應用意識,存在著知識的應用盲點.一旦遇到像這類作法開放的作圖題時,就會暴露出思路不開闊的弱點,因此,透視作圖的淵源,熟練每種作圖方法和澄澈作圖原理,并適度增加作圖應用的訓練勢在必行.

五、寫在后面

基本作圖的集中呈現,展現了五種作圖之間的內在關聯,打通了它們之間的橫隔,讓本來就是技能技法的教學內容,綻放出思想的花蕾、噴涌出思維的泉水.若我們停留在一招一式的技能上,縱然明其理,也弄不清來龍與去脈,彼此孤立,各自為戰,會大大削弱數學的內在魅力,基于尺規的作圖,把幾何直觀與邏輯推證拿捏在一起,展露了圖形的鮮活與靈動,增添了數學的秀色、彰顯出數學的本味!

參考文獻:

1.邱海敏.在探索中提高——尺規作圖復習課案例[J].黑龍江教育·中學教學案例與研究,2008(10).

2.吳瑞.對教學中尺規作圖難點的突破[J].中學時代,2012(22).

3.肖霄.對初中階段尺規作圖教學的反思和建議[J].中學數學教學,2012(4).

4.朱木蘭.基本作圖[J].中學數學教學,1995(3).

5.張建鵬.從學生熟悉的材料開始尺規作圖的教學[J].數學教學通訊(教師版),2011(24).

主站蜘蛛池模板: 久久窝窝国产精品午夜看片| 欧美国产综合视频| 亚洲人成成无码网WWW| 天天综合色网| 免费一级全黄少妇性色生活片| 亚洲中文在线看视频一区| 天天干天天色综合网| 亚洲IV视频免费在线光看| 精品亚洲国产成人AV| 999精品视频在线| 99福利视频导航| 99在线观看免费视频| 欧美一级爱操视频| 国产成人精品日本亚洲| 成人国产精品2021| 久久青草精品一区二区三区| 色吊丝av中文字幕| 国产丝袜无码一区二区视频| 久久精品电影| 麻豆国产原创视频在线播放| 看av免费毛片手机播放| 国产欧美性爱网| 国产欧美精品一区二区| 波多野结衣在线se| 欧美精品在线免费| 国产精品不卡片视频免费观看| 无码日韩视频| 色哟哟国产精品| 国产精品冒白浆免费视频| 波多野结衣一级毛片| 伊在人亚洲香蕉精品播放| 国产欧美在线观看一区| 99色亚洲国产精品11p| 国产成人高清精品免费5388| 九九热精品视频在线| 蜜桃臀无码内射一区二区三区 | 99成人在线观看| www精品久久| 亚洲成人一区二区三区| 婷婷久久综合九色综合88| 国产超碰一区二区三区| 午夜福利在线观看入口| 亚洲成A人V欧美综合| 国产成人高清精品免费软件| 国产精品亚洲精品爽爽| 黄色不卡视频| 免费无码AV片在线观看国产| 456亚洲人成高清在线| 乱人伦视频中文字幕在线| 日本道中文字幕久久一区| 午夜天堂视频| 美女一区二区在线观看| 亚洲一区第一页| 成人在线观看不卡| 国产精品视频导航| 国产无人区一区二区三区| 国产91丝袜在线播放动漫 | 亚洲精品波多野结衣| 成人另类稀缺在线观看| 亚洲黄色高清| 欧美成人看片一区二区三区 | 91精品啪在线观看国产91| 国产成人精品一区二区秒拍1o| 在线观看网站国产| 97人妻精品专区久久久久| 国产成人三级| 国产人在线成免费视频| 国产精品原创不卡在线| 日本在线国产| 亚洲va视频| 中文字幕不卡免费高清视频| 久综合日韩| 亚洲精品视频网| 亚洲天堂精品视频| 在线观看免费黄色网址| 国产精品v欧美| 日韩av无码精品专区| 国产成人精品2021欧美日韩| 欧美a级在线| 91在线无码精品秘九色APP | 成人福利一区二区视频在线| 中国成人在线视频|