魏有云
【摘 要】 在高中化學解題中運用建模思想,不僅能使學生突破感官和時空的局限,充分發揮學生的想象和推理能力,而且還可以拓寬學生的思維領域,從而提高學生發現問題、分析問題和解決問題的能力。
【關 鍵 詞】 建模思想;高中;化學解題
《2015年普通高等學校招生全國統一考試大綱——化學》對學習能力的要求部分提出:“能用正確的化學術語及文字、圖表、模型、圖形等表達化學問題解決的過程和結果,并作出解釋的能力。”其實,高考考試大綱要求的這種解題思想就是建模思想。
建模思想在高中化學解題中的主要作用是:①有利于學生形成和理解抽象的化學概念;②有利于學生建立反應模型,理解反應實質;③有利于學生假設體系模型,降低解題難度;④有利于學生利用數學模型,解決化學問題。
一、有利于學生形成和理解抽象的化學概念
如“化學平衡”概念的建立過程。課前學生做家庭實驗并思考產生現象的原因:將雕刻成球型的冰糖(其化學成分為蔗糖)置于蔗糖飽和溶液中,并把裝置放在冰箱冷藏柜里(保持溫度和溶劑質量都不變),幾天后,觀察小球的質量和形狀有無變化?學生根據實驗現象(質量不變,形狀有所改變)和已有的溶解平衡概念,進行如下分析、推理:
這樣,通過遷移建立起了“化學平衡”概念,使枯燥的、抽象的概念變得直觀、具體了,使學生不但能認識概念的內涵,而且能理解概念的本質。許多化學概念、物質性質都可以在建模思想的引領下,通過聯想、遷移、類比、推理等思維方式建立。
二、有利于學生建立反應模型,理解反應實質
學習元素化合物知識部分,化學反應類型紛繁復雜,學生掌握起來比較困難。如果在教學中概括出各類反應的反應模型,這樣就能使復雜而難以掌握的問題變得有規律可循了。臂如復習“水解反應”,可以通過下列具體的化學方程式概括出反應模型。具體反應:
從具體的“水解反應”中,尋找反應機理,最終得到“水解反應”的一般規律。不僅培養了學生的概括能力,而且使學生在較高層次上理解了反應的實質, 進一步提高了靈活運用知識的能力。
三、有利于學生假設體系模型,降低解題難度
有些化學問題比較抽象,用常規方法解決時,往往感到無從下手。如果根據建模思想,將問題分解并假設為幾個變化的體系模型,用理想化了的模型揭示在表面現象掩蓋下的化學反應本質,問題就迎刃而解了。
例 恒溫恒壓下,在容積可變的容器中,反應2NO2(g)?葑N2O4(g)達到平衡后,再向容器內通入一定量NO2,又達到平衡時,N2O4的體積分數( )
A. 不變 B. 增大 C. 減小 D. 無法判斷
分析:如果按照常規思維,容器容積改變,氣體濃度改變,分子數目也改變,就會誤選D選項。
若根據建模思想,變換思維方式,轉化思維角度,將該問題分解并假設為幾個變化的體系模型,解題就方便了。
四、有利于學生利用數學模型,解決化學問題
數學是思維的工具,很多化學問題需要用數學知識、數學方法(數學模型)來解決。運用數學模型解化學問題的基本思路是:明確化學問題中各知識點間關系→尋找各化學知識點之間的變量規律,應用化學原理建立化學模型→運用數學方法對化學模型進行處理,建立適當的數學模型→應用數學模型和化學規律解答化學問題。在高中化學中,數學模型解化學問題主要表現為:分類討論的思想,轉化與化歸的思想,數形結合的思想,函數與方程的思想。應用這些思想解決化學問題的技巧有:極值法、十字交叉法、平均值法、方程法、幾何法、排列組合法、圖像法、數軸法、數列法、數學歸納法、中間值法、不等式法、不定方程法、待定系數法等。
將具體的化學問題轉化為數學模型,轉化過程中,需要進行一系列的觀察、分析與綜合等思維活動,不但加強了學科間的聯系,而且提高了學生的抽象思維能力。
綜上所述,在高中化學解題中運用建模思想,不僅能使學生突破感官和時空的局限,充分發揮學生的想象和推理能力,而且還可以拓寬學生的思維領域,從而提高學生發現問題、分析問題和解決問題的能力。
【參考文獻】
[1] 陳虹利. 新課標下高中化學建模教學探究[J]. 廣西教育(B版),2015(9).
[2] 羅劍霞,譚蘊偉. 如何構建高中化學理想課堂[J]. 讀寫算(教育導刊),2015(13).
[3] 葉俊. 構建思想方法提高中學化學計算能力[J]. 讀寫算(教育導刊),2013(10).