999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

NT-3高表達促進神經干細胞向膽堿能神經元分化

2016-09-07 03:24:07閆宇輝李少恒姚瓔珈教亞男陶震宇楊靜嫻遼寧中醫藥大學藥學院藥理學教研室遼寧大連116600
中國藥理學通報 2016年5期
關鍵詞:檢測

閆宇輝,李少恒,孔 亮,姚瓔珈,教亞男,陶震宇,宋 捷,楊靜嫻(遼寧中醫藥大學藥學院藥理學教研室,遼寧大連 116600)

NT-3高表達促進神經干細胞向膽堿能神經元分化

閆宇輝,李少恒,孔亮,姚瓔珈,教亞男,陶震宇,宋捷,楊靜嫻
(遼寧中醫藥大學藥學院藥理學教研室,遼寧大連116600)

網絡出版時間:2016-4-26 11:06網絡出版地址:http://www.cnki.net/kcms/detail/34.1086.R.20160426.1106.018.html

目的體外研究神經營養因子3(neurotrophin-3,NT-3)基因轉染神經干細胞(neural stem cells,NSCs)后對其向膽堿能神經元分化的影響,并探討其機制。方法體外分離培養新生小鼠腦源NSCs,免疫熒光細胞化學法對其進行鑒定;將NSCs分為NSCs組(不作任何處理的NSCs)、GFP-NSCs組(轉染GFP的NSCs)、NT-3-NSCs組(轉染NT-3的NSCs),免疫熒光細胞化學法和ELISA法檢測各組NSCs中NT-3的表達;免疫熒光細胞化學法和RT-PCR法檢測各組NSCs向膽堿能神經元分化的能力;乙酰膽堿檢測試劑盒檢測乙酰膽堿分泌情況;RT-PCR法檢測Notch信號通路相關靶基因Hes1、Mash 1和Neurogenin 1(Ngn1)表達情況。結果免疫熒光細胞化學法結果顯示,NSCs表達其特異性標志蛋白

Nestin

神經干細胞;阿爾茨海默?。簧窠洜I養因子3;膽堿能神經元;分化;Notch信號通路

阿爾茨海默病(Alzheimer’s disease,AD)又稱老年性癡呆,是中老年人常見的以進行性記憶力減退和認知功能障礙為主要表現的神經退行性疾?。?],典型的病理特征為大腦皮層和海馬區出現老年斑與神經原纖維纏結,病灶周圍持續存在的炎癥反應和氧化應激損傷導致大量神經元潰變丟失、腦組織萎縮,其中以基底前腦膽堿能神經元丟失最為嚴重,引起學習與記憶障礙[2]。目前AD的治療主要是應用膽堿酯酶(AChE)抑制劑,從而升高大腦中乙酰膽堿(ACh)的濃度。然而,該療法雖能部分緩解癥狀,但無法補充大量丟失的神經細胞,且副作用嚴重[3-4],因此急需尋找并建立從根本上修復治療AD的新方法。

近年來,神經干細胞(neural stem cells,NSCs)的發現及成功分離,為補充替代缺損神經元、有效修復治療AD等神經退行性疾病帶來了新的希望。NSCs是一類具有自我更新能力和多向分化潛能的細胞,可分化為神經元和神經膠質細胞[5-6]。如何誘導NSCs定向分化為目的神經元是有效修復損傷神經的關鍵,也是目前干細胞研究領域尚未解決的難點與研究熱點。

神經營養因子-3(neurotrophin-3,NT-3)是NSCs的早期分化信號,體外研究表明,NT-3對交感神經元、感覺神經元、大腦皮層的上運動神經元、脊髓前角運動神經元以及大腦基底部的乙酰膽堿能神經元等均有維持存活的生物學作用[7-11]。本研究旨在探討NSCs在NT-3誘導下體外是否能分化為膽堿能神經元,為AD進行細胞移植替代治療提供實驗基礎和理論依據。

1 材料與方法

1.1動物C57BL/6小鼠購于大連醫科大學實驗動物中心,動物合格證號:SCXK(遼)2010-0001。

1.2試劑DMEM/F12培養基、B27、胎牛血清(fetal calf serum,FBS,Gibco);青-鏈霉素(penicillinstrepotomycin,P/S,Thermo);表皮生長因子(epidermal growth factor,EGF,Peptide);堿性成纖維細胞生長因子(basic fibroblast growth factor,bFGF,Peptide);小鼠抗Nestin、NF-M、NG2、GFAP抗體(北京博奧森);兔抗Sox2抗體、Cy3標記種屬特異性免疫熒光二抗(Jackson);TRIzol、LipofectamineTM2000、乙酰膽堿檢測試劑盒(Invitrogen)。

1.3儀器Ti-S型熒光顯微鏡(日本尼康)、超低溫冰箱(青島海爾,DIV-86L386)、CO2培養箱(NUAIRE,BPN)、酶標儀(深圳邁瑞,MR-96A)、PCR儀(杭州朗基,MG96G)、凝膠成像系統(UVP,GeneGenius)、水平核酸電泳儀(Bio-Rad)。

1.4NSCs的培養與鑒定取新生(48 h內)小鼠大腦,分離其海馬和側腦室下區,剪碎后用0.05%胰蛋白酶于37℃消化15 min,終止消化后經篩網過濾得到細胞懸液。以1.0×108·L-1密度置于含有20 μg·L-1bFGF、20 μg·L-1EGF、2%B27和100 kU·L-1雙抗的DMEM/F12中培養,每3 d換1次液。7 d后可誘導形成NSCs球,將NSCs球機械性分散為單個細胞后傳代培養。取第5代NSCs球,以抗小鼠Nestin和Sox2抗體(未分化NSCs標志性蛋白)進行雙標記免疫熒光細胞化學染色,共倒置熒光顯微鏡檢測鑒定[12-13]。將NSCs單細胞以1.0 ×108·L-1的密度接種于含有10%FBS的DMEM/ F12中誘導分化。2周后,用免疫熒光細胞化學染色鑒定分化細胞中NF-M(神經元)、NG2(少突膠質細胞前體細胞)、GFAP(星形膠質細胞)等特異性蛋白的表達。

1.5NT-3基因轉染NSCs及NT-3表達的檢測[14]用Lipofectamine 2000介導構建的L.v.-NT-3-GFP 和L.v.-GFP分別轉染293T包裝細胞,培養24 h后熒光顯微鏡下觀察兩組細胞都呈現綠色熒光。分別收集72 h內上述293T細胞培養液上清(含病毒),離心、濃縮并檢測病毒滴度;用濃縮的病毒上清轉染第5代NSCs;分別作為NT-3-NSCs組和GFP-NSCs組,另取正常培養的第5代NSCs作為NSCs組,轉染3 d后用免疫熒光細胞化學法和ELISA法檢測NT-3在各組NSCs中的表達。

1.6NT-3高表達對NSCs向膽堿能神經元分化的影響取上述3組NSCs,輕柔吹打分散后,以5× 107·L-1的密度在培養箱中培養4h讓細胞球貼壁,然后輕輕吸去培養基,加入含有 10%FBS的DMEM/F12培養基誘導分化。誘導分化2周后,小心棄去培養基,用4%多聚甲醛室溫固定30 min,PBS漂洗3次,用0.03%Triton X-100透化30 min后,加入1∶100稀釋的兔抗ChAT抗體,4℃孵育過夜,PBS漂洗3次后,再加入1∶150稀釋的Cy3標記的驢抗兔二抗工作液,室溫避光孵育1 h,PBS漂洗3次,再用DAPI染核15 min,PBS清洗后,吸凈培養孔內的液體,滴加少量抗熒光淬滅封片液,蓋上蓋玻片。置于倒置熒光顯微鏡下觀察各組細胞中膽堿能神經元標志物-膽堿乙酰轉移酶(choline acetyltransferase,ChAT)的表達[15]。取各組細胞上清液,依據乙酰膽堿檢測試劑盒說明書,測定各組細胞釋放的乙酰膽堿濃度。

1.7RT-PCR實驗分化條件下的各組單個NSCs培養于6孔板內,棄去培養液。按常規方法提取各組細胞總RNA[16],取稀釋后的RNA按照說明書合成cDNA。引物序列見下表。反應體系50 μL:cDNA 2 μL,PCR Master Mix 25 μL,上、下游引物各2 μL,DEPC水19 μL,按以下條件進行:預變性95℃2 min,變性95℃ 30 s,退火54℃ 30 s,延伸72℃40 s,終延伸72℃ 10 min,35個循環,擴增ChAT、Hes 1、Mash1和Ngn1基因的mRNA,以β-actin為內參。取各組擴增產物5 μL,加1 μL Loading Buffer混勻,1.5% 瓊脂糖凝膠電泳,用凝膠成像系統拍照,Image J圖像分析軟件對條帶進行光密度掃描[17],結果用相對光密度表示,相對光密度=光密度目的基因/光密度β-actin。

Tab 1 Gene sequences

2 結果

2.1小鼠NSCs的培養與鑒定第5代NSCs半懸浮在增殖培養基中,形成多個大小不等的神經干細胞球,免疫細胞化學染色顯示其表達高水平的神經干細胞特異性標志蛋白Nestin(綠色)和Sox2(紅色),證明為未分化的NSCs(圖1A)。將NSCs細胞球機械性吹打分散為單細胞,接種于分化培養基中誘導分化,2周后用免疫細胞化學法檢測,結果顯示,NSCs可分化為NF-M+神經元、NG2+少突膠質細胞前體細胞、GFAP+星形膠質細胞,說明其具有多向分化能力(Fig 1B)。

Fig 1 Generation and characterization of NSCs

2.2NT-3在NSCs中的表達檢測免疫細胞化學法檢測基因轉染3 d后的NSCs,結果顯示,NT-3-NSCs組和GFP-NSCs組均呈GFP+(綠色),而NSCs組無綠色熒光,說明除NSCs組外,其他2組細胞都被病毒質粒有效轉染;NT-3(red)在NT-3-NSCs組中呈強陽性表達,而在GFP-NSCs和NSCs組中只微弱表達(Fig 2A);ELISA法檢測各組細胞上清液中NT-3的濃度,結果顯示,NT-3-NSCs組培養3d的上清液中NT-3的濃度明顯升高,說明該組細胞能高表達NT-3(P<0.01,Fig 2B)。

Fig 2 Identification of NT-3 expression in NSCs

2.3NT-3高表達可促進NSCs向膽堿能神經元分化為了檢測NT-3高表達對NSCs分化為膽堿能神經元能力的影響,我們將各組細胞接種于分化培養基中誘導分化。2周后用免疫細胞化學法和RTPCR法檢測,結果顯示,NT-3-NSCs組可更多地分化為ChAT+膽堿能神經元(22.86%±2.17%),而NSCs組(10.15% ±0.46%)和 GFP-NSCs組(10.25%±1.19%)向膽堿能神經元的分化率較低,組間比較差異具有顯著性(P<0.01,Fig 3A-B),說明NT-3高表達能夠促進NSCs向膽堿能神經元分化。RT-PCR法檢測表明,NT-3-NSCs組細胞中ChAT mRNA的表達量與其他2組比較也明顯增加(P<0.05,Fig 3C-D)。為進一步檢測分化的膽堿能神經元是否能夠分泌其特異性神經遞質乙酰膽堿,我們采用乙酰膽堿檢測試劑盒檢測了各組細胞上清液中乙酰膽堿的含量。結果顯示,NSCs組和GFPNSCs組上清液中乙酰膽堿的含量分別為(0.55± 0.12)μmol·L-1和(0.56±0.13)μmol·L-1,而NT-3-NSCs組可高達(2.92±0.24)μmol·L-1(P<0.01,Fig 3E)。

Fig 3 Expression of choline acetyltransferase(ChAT)in NT-3-transduced NSCs after 2 weeks’culturing in differentiation medium

2.4NT-3高表達調節NSCs內Notch通路相關基因的表達為了探討NT-3促進NSCs向膽堿能神經元分化的機制,我們采用 Notch通路的抑制劑DAPT來阻斷通路信號,應用 RT-PCR法檢測了Hes1、Mash 1和Neurogenin 1(Ngn 1)mRNA的表達。Mash 1和Ngn 1是bHLH轉錄因子,激活bHLH轉錄因子能夠激活神經元性分化。結果顯示,NT-3-NSCs組 Hes 1 mRNA表達減少,而 Mash1、Ngn 1 mRNA的表達則增加,與GFP-NSCs和NSCs組比較差異具有顯著性(P<0.05,Fig 4)。加入DAPT抑制劑后,Hes1 mRNA表達進一步減少,而Mash1、Ngn 1 mRNA的表達則進一步增加(P<0.01,Fig 4),說明NT-3高表達促進NSCs向膽堿能神經元分化可能是通過抑制Notch信號通路實現的。

Fig 4 Effect of NT-3 overexpression on Notch signaling pathway in NSCs

3 討論

由于傳統藥物療效有限,要想從根本上治療AD等神經系統退行性疾病,修復和代替受損的腦組織,NSCs移植被認為是一種有效的治療方法。NSCs替代治療主要有兩種途徑:內源性途徑,即誘導內源性NSCs的增殖和分化,受損的中樞神經系統可以自我修復;外源性途徑,即直接更換有缺陷的組織或植入轉基因細胞,這種細胞可以分泌生長因子,促進干細胞增殖。一些研究表明,NSCs在直接移植到受損區域時,它的分化會受限[18-19],且向神經元的分化率較低,對補充缺失的神經元是非常不利的。因此,如何誘導移植后的NSCs向神經元分化,尤其是定向分化為功能神經元是治療AD等神經退行性疾病的關鍵[20]。

神經營養因子(neurotrophic factors,NTF)是一類對神經元的發育、存活和凋亡起重要作用的小分子蛋白質,與NSCs的增殖、分化密切相關,對NSCs分化到終末細胞的整個過程均有影響,其成員主要包括神經生長因子(NGF)、腦源性生長因子(BDNF)、神經營養因子3(NT-3)、神經營養因子4(NT-4)等。不同的NTF在NSCs的誘導分化中起重要作用,NT-3是其中重要的一員[21-22],有研究表明[23],將NT-3加入NSCs培養基中,18 d后NSCs可分化為更多的膽堿能神經元。NSCs自身表達的NT-3極少,難以達到有效修復神經損傷的目的,且NT-3在體內不穩定,極易被稀釋或降解失活,吸收率不高[24],體外實驗中,NT-3半衰期短,需要每天向培養基中加入才能發揮效用,給其臨床應用帶來了一定的局限性,基因轉染技術為神經營養因子的臨床應用提供了新的思路和途徑。采用基因轉染技術能使NSCs穩定高效表達NT-3,既能維持其有效作用濃度,達到促進神經再生的目的,又能避免NT-3給藥途徑上的不便[25]。在本實驗中,我們構建了高表達NT-3的NSCs,觀察其體外誘導NSCs向膽堿能神經元的分化,結果表明,NT-3高表達的NSCs可分化為更多的膽堿能神經元,且各組細胞上清液中釋放的乙酰膽堿和ChAT mRNA的表達量也明顯增加。

為了進一步探討NT-3轉基因促進NSCs向膽堿能神經元分化的分子機制,我們采用RT-PCR法檢測了NSCs分化相關調控因子mRNA的表達,包括bHLH基因家族及Notch信號通路相關信號分子。NSCs的分化存在自身基因調控和外來信號調控兩種機制。隨著對中樞神經系統發育過程中控制神經細胞發生模式和特化的機制不斷深入的研究,越來越多的研究揭示,bHLH(basic helix-loop-helix)基因家族在神經發生、神經發育和神經分化中發揮重要的調控作用[26-27]。bHLH基因家族是一類轉錄調節因子家族,分為正調控型(如Mash1、Ngn1)和負調控型(如Hes1)兩類。Hes1(hairy and enhancer of split 1)在維持NSCs增殖、分化為適當數量的細胞及分化的多樣性方面具有重要的作用。mash1 (mammalian achaete-scute homolog 1)則參與了神經前體細胞的產生以及促進這些多潛能前體細胞向不同類型的神經元分化[28-30]。γ-分泌酶是調節Notch信號通路的核心環節[31],它參與了Notch信號通路的酶解過程,DAPT是γ-分泌酶抑制劑,通過阻斷γ-分泌酶,減少NICD(notch intracellular domain,Notch受體的活化形式)的產生,從而使下游信號分子處于靜止狀態,干細胞進入分化程序。本實驗利用RT-PCR技術,檢測了NSCs中的Hes1、Mash1和Ngn1 mRNA的表達。結果顯示,與GFP-NSCs和NSCs組比較,NT-3-NSCs組Hes1 mRNA表達減少,而Mash1和Ngn1 mRNA的表達增加,DAPT抑制劑能夠使Hes1 mRNA表達進一步減少,而Mash1、Ngn 1 mRNA的表達則進一步增加,說明NT-3可能是通過抑制Notch通路來促進NSCs向膽堿能神經元的分化,這為誘導NSCs定向分化為功能神經元提供了新的依據。

總之,本實驗通過體外培養和鑒定NSCs,轉染NT-3基因后,體外誘導分化并觀察其向膽堿能神經元的分化情況,用RT-PCR技術檢測出其定向分化機制可能與抑制Notch信號通路有關,為進一步研究細胞替代治療AD等神經退行性疾病奠定了基礎。

[1]李少恒,教亞男,姚瓔珈,等.蛇床子素對感染APP基因的神經元突觸的保護作用[J].中國藥理學通報,2015,31(10):1383-8.

[1]Li S H,Jiao Y N,Yao Y J,et al.Neuroprotective effect of osthole on neuron synapses infected APP gene[J].Chin Pharmacol Bull,2015,31(10):1383-8.

[2]Moghadam F H,Alaie H,Karbalaie K,et al.Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats[J]. Differentiation,2009,78(2-3):59-68.

[3]Zhang Y,Kurup P,Xu J,et al.Genetic reduction of striatal-enriched tyrosine phosphatase(STEP)reverses cognitive and cellular deficits in an Alzheimer’s disease mouse model[J].Proc Natl Acad Sci USA,2010,107(44):19014-9.

[4]Iqbal K,Grundke-Iqbal I.Alzheimer’s disease,a multifactorial disorder seeking multitherapies[J].Alzheimers Demen,2010,6 (5):420-4.

[5]Magnus T,Rao M S.Neural stem cells in inflammatory CNS diseases:mechanisms and therapy[J].J Cell Mol Med,2005,9 (2):303-19.

[6]Yang J,Jiang Z,Fitzgerald D C,et al.Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis[J].J Clin Invest,2009,119(12):3678-91.

[7]Li T,Jiang L,Zhang X,Chen H.In-vitro effects of brain-derived neurotrophic factor on neural progenitor/stem cells from rat hippocampus[J].Neuroreport,2009,20(3):295-300.

[8]Guo J,Zeng Y,Liang Y,et al.Cyclosporine affects the proliferation and differentiation of neural stem cells in culture[J].Neuroreport,2007,18(9):863-8.

[9]Kato M,Yoshimura S,Kokuzawa J,et al.Hepatocyte growth factor promotes neuronal differentiation of neural stem cells derived from embryonic stem cells[J].Neuroreport,2004,15(1):5-8.

[10] Kobayashi M,Matsuoka I.Enhancement of sympathetic neuron survival by synergistic action of NT3 and GDNF[J].Neuroreport,2000,11(11):2541-5.

[11]Lin S,Wang Y,Zhang C,et al.Modification of the neurotrophin-3 gene promotes cholinergic neuronal differentiation and survival of neural stem cells derived from rat embryonic spinal cord in vitro and in vivo[J].J Int Med Res,2012,40(4):1449-58.

[12]李少恒,胡昱,姚瓔珈,等.蛇床子素對神經干細胞體外分化的影響[J].醫藥導報,2015,34(7):856-60.

[12]Li S H,Hu Y,Yao Y J,et al.Effects of osthole on differentiation of neural stem cells in vitro[J].Herald Med,2015,34(7):856 -60.

[13]姚瓔珈,孔亮,教亞男,等.蛇床子素通過Wnt/β-catenin信號通路促進轉染APP基因的神經干細胞分化為更多神經元且減少神經元凋亡[J].中國藥理學通報,2015,31(11):1516 -23.

[13]Yao Y J,Kong L,Jiao Y N,et al.Osthole promotes differentiation into neurons and reduces neuronal apoptosis via Wnt/β-catenin signaling pathway in APP transduced neural stem cells[J]. Chin Pharmacol Bull,2015,31(11):1516-23

[14]Yang J,Yan Y,Xia Y,et al.Neurotrophin 3 transduction augments remyelinating and immunomodulatory capacity of neural stem cells[J].Mol Ther,2014,22(2):440-50.

[15]Gu G,Zhang W,Li M,et al.Transplantation of NSC-derived cholinergic neuron-like cells improves cognitive function in APP/ PS1 transgenic mice[J].Neuroscience,2015,16(291):81-92.

[16]Hu Y,Wen Q,Liang W,et al.Osthole reverses beta-amyloid peptide cytotoxicity on neural cells by enhancing cyclic AMP response element-binding protein phosphorylation[J].Biol Pharm Bull,2013,36(12):1950-8.

[17]Xia Y,Kong L,Yao Y J,et al.Osthole confers neuroprotection against cortical stab wound injury and attenuates secondary brain injury[J].Neuroinflammation,2015,12(1):155-65.

[18]Cao Q L,Zhang Y P,Howard R M,et al.Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage[J].Exp Neurol,2001,167(1):48-58.

[19]Chow S Y,Moul J,Tobias C A,et al.Characterization and intraspinal grafting of EGF/b FGF-dependent neurospheres derived from embryonic rat spinal cord[J].Brain Res,2000,874(2):87 -106.

[20]Yang J,Rostami A,Zhang G X.Cellular remyelinating therapy in multiple sclerosis[J].J Neurol Sci,2009,276(1-2):1-5.

[21] Chao M V,Rajagopal R,Lee F S.Neurotrophin signaling in health and disease[J].Clin Sci(Lond),2006,110(2):167-73.

[22]Blesch A,Lu P,Tuszynski M H.Neurotrophic factors,gene therapy,and neural stem cells for spinal cord repair[J].Brain Res Bull,2002,57(6):833-8.

[23]Nilbratt M,Porras O,Marutle A,et al.Neurotrophic factors promote cholinergic differentiation in human embryonic stem cell-derived neurons[J].J Cell Mol Med,2010,14(6B):1476-84.

[24]Guo J S,Zeng Y S,Li H B,et al.Cotransplant of neural stem cells and NT-3 gene modified Schwann cells promote the recovery of transected spinal cord injury[J].Spinal Cord,2006,13(6):473-6.

[25]Zhang N,Kang T,Xia Y,et al.Effects of salvianolic acid B on survival,self-renewal and neuronal differentiation of bone marrow derived neural stem cells[J].Eur J Pharmacol,2012,697(1-3):32-9.

[26]Shi Y,Sun G,Zhao C,et al.Neural stem cell self-renewal[J]. Crit Rev Oncol Hematol,2008,65(1):43-53.

[27]Nyfeler Y,Kirch R D,Mantei N,et al.Jagged1 signals in the postnatal subventricular zone are required for neural stem cell selfrenewal[J].EMBO J,2005,24(19):3504-15.

[28]Kageyama R,Ohtsuka T,Hatakeyama J,et al.Roles of bHLH genes in neural stem cell differentiation[J].Exp Cell Res,2005,306(2):343.

[29]Nakazaki H,Reddy A C,Mania-Farnell B L,et al.Key basic helix-loop-helix transcription factor genes Hes1 and Ngn2 are regulated by Pax3 during mouse embryonic development[J].Dev Biol,2008,316(2):510-23.

[30]Goncalves M B,Agudo M,Connor S,et al.Sequential RARbeta and alpha signaling in vivo can induce adult forebrain neural progenitor cells to differentiate into neurons through Shh and FGF signaling pathways[J].Dev Biol,2009,326(2):305-13.

[31]Tagami S,Okochi M,Yanagida K,et al.Regulation of Notch signaling by dynamic changes in the precision of S3 cleavage of Notch-1[J].Mol Cell Biol,2008,28(1):165-76.

Neurotrophin 3 gene overexpression promotes cholinergic differentiation in neural stem cells

YAN Yu-hui,LI Shao-heng,KONG Liang,YAO Ying-jia,JIAO Ya-nan,
TAO Zhen-yu,SONG Jie,YANG Jing-xian
(Dept of Pharmacology,School of Pharmacy,Liaoning Unversity of Traditional Chinese Medicine,Dalian Liaoning116600,China)

AimTo investigate the effects of neurotrophin-3(NT-3)gene overexpression on the differentiation into cholinergic neuron of neural stem cells (NSCs)in vitro and its underlying mechanism.MethodsBrain-derived NSCs from newborn mice were isolated and cultured in vitro and determined by immunofluorescence.TheNSCsweredividedintothree groups:NSCs,GFP-NSCs and NT-3-NSCs groups. The expression of NT-3 was detected by immunofluorescence and ELISA.Then,the ability of NSCs on differentiation into cholinergic neuron was detected by immunofluorescence and RT-PCR,and the Acetylcholine Assay Kit was used for acetylcholine(ACh),and the expression of Hes1,Mash1 and Ngn1 mRNA was determined by RT-PCR.ResultsThe neurosphere displayed Nestin and Sox 2-postive by immunofluorescence,suggesting that the cultured cells were NSCs. The proportion of ChAT immunopositive cells was significantly higher in the NT-3-NSCs group than that in the other two groups(P<0.01).Ach secretion in NT-3-NSCs was significantly elevated compared with the other two groups(P<0.01).NSCs transfected with NT-3 increased the levels of Mash1 and Ngn1 mRNA,and decreased the level of Hes1 mRNA(P<0.05).ConclusionNT-3 can significantly promote the in vitro differentiation of NSCs into cholinergic neurons via probablly inhibiting Notch signaling pathway.

neural stem cells;Alzheimer’s disease;neurotrophin-3;cholinergic neuron;differentiation;Notch signaling pathway

10.3969/j.issn.1001-1978.2016.05.009

A

1001-1978(2016)05-0631-07

R-332;R322.8;R329.24;R394.2;R745.7;R977.6

2016-01-04,

2016-02-05

國家自然科學基金面上項目(No 81173580)

閆宇輝(1982-),女,博士生,講師,研究方向:中藥神經藥理學,E-mail:ctyanyh@163.com;楊靜嫻(1963-),女,博士,教授,博士生導師,研究方向:神經藥理學,通訊作者,Tel:0411-87586009,E-mail:jingxianyang@yahoo.com和Sox2,與NSCs組和GFP-NSCs組相比,NT-3-NSCs組能夠分化為更多的膽堿能神經元(P<0.01),分化的膽堿能神經元可分泌乙酰膽堿(P<0.01),且能夠減少Notch通路靶基因Hes 1 mRNA的表達,增加Mash1、Ngn 1 mRNA的表達(P <0.05)。結論NT-3高表達可促進NSCs分化為更多的膽堿能神經元,其機制可能與抑制Notch信號通路有關。

猜你喜歡
檢測
QC 檢測
“不等式”檢測題
“一元一次不等式”檢測題
“一元一次不等式組”檢測題
“幾何圖形”檢測題
“角”檢測題
“有理數的乘除法”檢測題
“有理數”檢測題
“角”檢測題
“幾何圖形”檢測題
主站蜘蛛池模板: 亚洲av片在线免费观看| 免费无码AV片在线观看中文| 国产精品永久在线| 蜜臀av性久久久久蜜臀aⅴ麻豆| 亚洲浓毛av| 亚洲日本www| 久久黄色影院| 天天躁夜夜躁狠狠躁图片| 黑人巨大精品欧美一区二区区| 国产制服丝袜无码视频| 亚洲第一天堂无码专区| 欧美久久网| 青青青视频蜜桃一区二区| 二级特黄绝大片免费视频大片| 波多野结衣在线一区二区| 中国一级特黄大片在线观看| 国产波多野结衣中文在线播放 | 高清免费毛片| 污网站在线观看视频| 国产黑丝视频在线观看| 久久毛片免费基地| 福利在线一区| 欧美日韩一区二区三区四区在线观看 | 波多野结衣在线se| 国产人在线成免费视频| 久久这里只精品热免费99| 久久综合亚洲色一区二区三区| 高清无码手机在线观看| 精品久久久久成人码免费动漫| 久久精品这里只有精99品| 欧美日韩国产综合视频在线观看| 青青久久91| 午夜无码一区二区三区| 黄色网页在线播放| 欧美成人aⅴ| 精品无码日韩国产不卡av| 国产97公开成人免费视频| 一本大道香蕉中文日本不卡高清二区| 精品视频一区在线观看| 黄色网站不卡无码| 亚洲日本中文综合在线| 在线观看国产黄色| 日韩av电影一区二区三区四区| 久久久久国产一级毛片高清板| 国产欧美另类| 日韩欧美高清视频| 国产大片黄在线观看| 国产91透明丝袜美腿在线| 好吊色国产欧美日韩免费观看| 日本国产在线| 国产精品自在线拍国产电影| 日韩视频精品在线| 色综合狠狠操| 拍国产真实乱人偷精品| 亚洲伊人电影| 欧美成a人片在线观看| 在线毛片网站| 9cao视频精品| 久久久噜噜噜| 2020极品精品国产 | 影音先锋丝袜制服| 欧美高清日韩| 91精品免费久久久| 国产大片喷水在线在线视频| 国产拍揄自揄精品视频网站| 99精品视频九九精品| 女人18一级毛片免费观看| 国产欧美日韩综合在线第一| 日韩中文无码av超清| 99免费在线观看视频| 青草娱乐极品免费视频| 久久久久夜色精品波多野结衣| JIZZ亚洲国产| 中文纯内无码H| 国产精品自在拍首页视频8| 亚洲日韩精品伊甸| 国产色爱av资源综合区| 国产人成在线观看| 人禽伦免费交视频网页播放| 欧美中文字幕在线播放| 69视频国产| 日韩在线播放中文字幕|