999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

PERIODIC SOLUTIONS OF DAMPED IMPULSIVE SYSTEMS

2016-10-13 08:12:11JIANGLixinDINGWei
數(shù)學雜志 2016年5期
關(guān)鍵詞:系統(tǒng)

JIANG Li-xin,DING Wei

(1.Department of Mathematics and Physics,Nantong Normal College,Nantong 226006,China)

(2.School of Sciences,Nantong University,Nantong 226007,China)

PERIODIC SOLUTIONS OF DAMPED IMPULSIVE SYSTEMS

JIANG Li-xin1,DING Wei2

(1.Department of Mathematics and Physics,Nantong Normal College,Nantong 226006,China)

(2.School of Sciences,Nantong University,Nantong 226007,China)

In this paper,we study the existence of periodic solutions of damped impulsive problems via variational method.By presenting a new approach,we obtain the critical points of impulsive systems with periodic boundary under some assumptions,which generalizes the known results and enriches the research methods of impulsive problems.

critical points;impulses;periodic boundary;constraint

2010 MR Subject Classification:45M15;65L10

Document code:AArticle ID:0255-7797(2016)05-0920-09

1 Introduction

Impulsive differential equations arising from the real world describe the dynamic of processes in which sudden discontinuous jumps occur.In recent years,impulsive problems attracted the attention of a lot of researchers and in consequence the number of papers related to this topic is huge,see[1-6]and their references.For a second order differential equation x'+f(t,x,x')=0,one usually considers impulses in the position x and the velocity x'. However,in the motion of spacecraft one has to consider instantaneous impulses dependent only on the position,and the result in jump is discontinuous in velocity,but with no change in position[7,8].Let t0=0<t1<t2<···<tp<tp+1=2π.Recently,the following Dirichlet boundary value problems with impulses

were studied by variational method in[9,10],where f:[0,2π]×R→R is continuous,g∈C[0,2π],and the impulse functions Ij:R→R is continuous for every j.After that,impulsive problems(1.1)-(1.2)with periodic boundary

was also investigated in[6]when g(t)≡0.

Generally,people are used to obtain the critical points of impulsive problems via Mountain pass theorem or Saddle point theorem.In this paper,we use Lagrange multipliers theorem,that is conditional extremum theory,to investigate impulsive problems(1.1)-(1.2)with periodic boundary

The organization of the paper is as follows.In Section 2,we give variational structure of impulsive problem(1.1)-(1.2)-(1.5).In Section 3,critical points corresponding to periodic solutions of impulsive problems(1.1)-(1.2)are obtained by constrain theory.

2 Variational Structure

In this section,we always assume that f:R×R→R is 2π-periodic in t for all x∈R and satisfies the following carath′eodory assumptions:

(1)for every x∈R,f(·,x)is measurable on[0,2π];

(2)for a.e.t∈[0,2π],f(t,·)is continuous on R;

Multiplying equation(1.1)by eG(t),we can see that impulsive problem(1.1)+(1.2)+(1.5)is equivalent to

We now investigate impulsive system(2.1)+(1.2)+(1.5).Define Hilbert space

Proposition 2.1 Under our assumptions,functional φ(x)is weakly lower semi-continuous on

The following result is evident.

Proposition 2.3 Under our assumptions,if x∈is a critical point of φ,then x is one 2π-periodic solution of problem(2.1)+(1.2)+(1.5).

Proof Let x be a critical point of φ in,then for every v∈we have

We now check that x satisfies(2.1)+(1.2)+(1.5).

It implies that(eG(t)x')'+eG(t)f(t,x)=0 a.e.t∈[tj,tj+1].Hence x satisfies

That is,x satisfies equation(2.1).

0.By integration by parts,we have

Combining with(2.2),which implies that

Hence

This is just condition(1.2).

On the other hand,in(2.2),let v=1,then

Thus we complete the proof.

3 Critical Points in Constraints

The following Lagrange multipliers theorem is well known(see Theorem 2.1 in[11]or Theorem 3.1.31 in[12]).

Lemma 3.1 Let φ∈C1,R)and M={x∈:ψj(x)=0,j=1,···,n},where ψj∈C1,j=1,···,n,andare linearly independent foreach x∈Then if u∈M is a critical point of φ|M,there exist λj∈R j=1,···,n, such that

We now give the following minimization principle in constraint M.

Lemma 3.2(see Theorem 1.1 in[11])Let M be a weakly closed subset of a Hilbert space X.Suppose a functional φ:M→R is

(i)weakly lower semi-continuous,

(ii)φ(u)→+∞as‖u‖→∞,u∈M, then φ is bounded from below and there exists u0∈M such that φ(u0)=

Using the above lemmas,the author of[11]consider the following Neumann problem

for some suitable ??RNand f(u)under natural constraints(see[11]).Inspired by his work,in this section,we take our attention to find the critical points of functional φ over a set of constraints M?

and

Besides those conditions given to f(t,x),g(t)and Ij(x),j=1,···,k in Section 2,we also assume that there exist constants α,β>0,ξj∈R,j=1,···,k,such that

It is easy to see that

where constant 0≤η<2 and the function a is from carath′eodory assumption(3).

For convenience,we denote A=max{eG(t)}and B=min{eG(t)},then A,B>0.

Theorem 3.3If above assumptions hold and 6B-A(2‖b‖1+pβ)π>0,then problem (1.1)-(1.2)-(1.5)has at least one solution.

Remark 3.4We only need to prove that problem(2.1)-(1.2)-(1.5)has at least one solution.

Then by conditions(3.6)and(3.7),one has Γ'(x)/=0,which indicates that Γ'(x)linearly independent for each x∈

Remark 3.5It is easy to see that,by conditions(3.5)-(3.7),we have that,?u∈there exists a unique c∈R such that u+c∈M.In fact,?u∈one has that u is continuous and the functioneG(tj)Ij(u(tj)+c)defined on R is continuous and strictly increasing,moreover

Lemma 3.6Under our assumptions,is a critical point of φ if and only if x∈M and x is a critical point of φ|M.

i.e.,x∈M,and hence x is a critical point of φ|M.

On the other hand,if x is a critical point of φ|M,by Lemma 3.1,there exists λ∈Rsuch that for every

Choosing v=1 and observing that x∈M,we have

which follows that λ=0 since>0 and≤0.Putting it into(3.9),one has φ'(x)=0.

Thus we complete the proof.

To functional

we have the following results.

Lemma 3.7Under our assumptions,we have

(i)Φ(u+c)≤Φ(u),?u+c∈M,where u∈,c∈R.

(ii)Let un+cn∈M,where un∈and cn∈R.Then if‖un+cn‖→∞,one has‖un‖→∞.

The above two inequalities give that

which follows(i).

Next,we turn to prove(ii).Define functional Ψ:×R→R by the following

Because of the strict increase of Ψ(u,·),when n is big enough,we have

0=Ψ(v,c(v))<Ψ(v,cn)=Ψ(v,cn)-Ψ(vn,cn)

as n→∞.It is contradictory.

Thus we complete the proof.

Proof of Theorem 3.3Without loss of generality,we may assume that a(x)≤x2in condition(3.8)and ξj=0,j=1,2,···,p in condition(3.7).Then under our assumptions,one has

It implies that

Since 6B-A(2‖b‖1+pβ)π>0,by(3.4)and(ii)of Lemma 3.7,we have φ(u+c)→+∞as ‖u+c‖→∞,u+c∈M.

On the other hand,M is weakly closed and φ is weakly lower semi-continuous,therefore by Lemma 3.2,there exists at least one critical point x∈M of φ|M.Then by Lemma 3.6,we complete the proof.

References

[1]Nieto J J.Basic theory for nonresonance impulsive periodic problems of first order[J].J.Math. Anal.Appl.,1997,205(2):423-433.

[2]Dong Y.Sublinear impulse effects and solvability of boundary value problems for differential equations with impulses[J].J.Math.Anal.Appl.,2001,264(1):32-48.

[3]He Z,Yu J.Periodic boundary value problems for first-order impulsive ordinary differential equations[J].J.Math.Anal.Appl.,2002,279(1):1223-1232.

[4]Nieto J J,O'Regan D.Variational approach to impulsive differential equations[J].Nonl.Anal. (RWA),2009,10(2):680-690.

[5]Zhang X Z,Liu B.Existence of positive periodic solutions to a nonautonomous delay differential equation with impulses[J].J.Math.,2007,27(2),157-164.

[6]Ding W,Qian D.Periodic solutions for sublinear systems via variational approach[J].Nonl.Anal. (RWA),2010,11(4):2603-2609.

[7]Carter T E.Optimal impulsive space trajectories based on linear equations[J].J.Optim.The.Appl.,1991,70(2):277-297.

[8]Carter T E.Necessary and sufficient conditions for optimal impulsive rendezvous with linear equations of motion[J].Dynam.Contr.,2000,10(3):219-227.

[9]Nieto J J.Variational formulation of a damped Dirichlet impulsive problem[J].Appl.Math.Lett.,2010,23(8):940-942.

[10]Xiao J,Nieto J J.Variational approach to some damped Dirichlet nonlinear impulsive differential equations[J].J.Franklin Inst.,2011,348(2):369-377.

[11]David G C.An invitation to variational methods in differential equations[M].Boston,Basel,Berlin:Birkh¨auser,2007.

[12]Berger M S.Nonlinearity and functional analysis[M].San Diego,US:Els.Sci.Publish.Co.Inc.,1977.

[13]Mawhin J,Wilem M.Critical point theory and Hamiltonian systems[M].Berlin,Heidelberg,New York:Springer-Verlag,1989.

帶阻尼項的脈沖系統(tǒng)的周期解

姜黎鑫1,丁衛(wèi)2
(1.南通師范高等專科學校數(shù)理系,江蘇南通226006)
(2.南通大學理學院,江蘇南通226007)

本文利用變分法研究了帶阻尼項的脈沖系統(tǒng)的周期解.采用一種新的方法,在一些條件下證明了帶周期邊界條件的脈沖系統(tǒng)存在臨界點.本文不僅推廣了已有的結(jié)果而且還豐富了研究脈沖系統(tǒng)的方法.

臨界點;脈沖;周期邊界;限制

MR(2010)主題分類號:45M15;65L10O175.13;O176.3

date:2016-03-15Accepted date:2016-04-22

Supported by National Natural Science Foundation of China(11501308).

Biography:Jiang Lixin(1982-),female,born at Qidong,Jiangsu,master,major in ordinary differential equation.

猜你喜歡
系統(tǒng)
Smartflower POP 一體式光伏系統(tǒng)
WJ-700無人機系統(tǒng)
ZC系列無人機遙感系統(tǒng)
北京測繪(2020年12期)2020-12-29 01:33:58
基于PowerPC+FPGA顯示系統(tǒng)
基于UG的發(fā)射箱自動化虛擬裝配系統(tǒng)開發(fā)
半沸制皂系統(tǒng)(下)
FAO系統(tǒng)特有功能分析及互聯(lián)互通探討
連通與提升系統(tǒng)的最后一塊拼圖 Audiolab 傲立 M-DAC mini
一德系統(tǒng) 德行天下
PLC在多段調(diào)速系統(tǒng)中的應(yīng)用
主站蜘蛛池模板: 欧美色综合久久| 亚洲第一黄片大全| 性网站在线观看| 亚洲精品爱草草视频在线| 91精品最新国内在线播放| 99青青青精品视频在线| 国产成人一区在线播放| 人妻精品全国免费视频| 99久久无色码中文字幕| 美女毛片在线| 国产亚洲精品97AA片在线播放| 激情无码字幕综合| 巨熟乳波霸若妻中文观看免费| 亚洲成人在线免费| 亚洲欧美人成电影在线观看| 久久综合色88| 国产在线日本| 国产精品九九视频| 一本综合久久| 精品国产福利在线| 毛片手机在线看| 国产精品区视频中文字幕| 99精品在线看| 亚洲综合天堂网| 日韩麻豆小视频| 亚洲欧美国产五月天综合| 亚洲日本韩在线观看| 国产综合在线观看视频| 欧美日韩亚洲综合在线观看| 最新无码专区超级碰碰碰| 国产丝袜啪啪| 国产精品毛片在线直播完整版 | 手机在线国产精品| 一级福利视频| 国产亚洲精品自在久久不卡| 日本免费新一区视频| 无码高清专区| 国产精品三级专区| 国产波多野结衣中文在线播放| 欧美日韩午夜| 免费看的一级毛片| 久草视频中文| 高清色本在线www| 欧美色图久久| 国产毛片基地| 国产成人亚洲精品无码电影| 亚洲最猛黑人xxxx黑人猛交| 热这里只有精品国产热门精品| 欧美亚洲欧美| 日韩亚洲综合在线| 欧洲一区二区三区无码| 亚洲欧美日韩中文字幕在线| 国产手机在线小视频免费观看| 丁香六月激情综合| 国产女人喷水视频| 久久毛片网| 亚洲色图欧美| 中文字幕1区2区| 九九热免费在线视频| 中文字幕人妻无码系列第三区| 无码AV动漫| 午夜小视频在线| 国产大片喷水在线在线视频| 无码区日韩专区免费系列| 国产精品主播| 日韩人妻少妇一区二区| 国产丝袜一区二区三区视频免下载| 亚洲成年人网| 手机成人午夜在线视频| 成年人国产网站| 在线播放真实国产乱子伦| 99ri国产在线| 久久久久九九精品影院| 欧洲欧美人成免费全部视频| 青草视频久久| 91青草视频| 亚洲一区二区在线无码| 亚洲乱码在线视频| 麻豆精品国产自产在线| 91欧美在线| 一本二本三本不卡无码| 亚洲国产91人成在线|