999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

THE MINIMAL SOLUTION OF A SPECIAL ANTICIPATED BACKWARD STOCHASTIC DIFFERENTIAL EQUATION

2016-10-13 08:12:15TUShuhengLIAOJunjun
數(shù)學雜志 2016年5期

TU Shu-heng,LIAO Jun-jun

(1.School of Science,Henan University of Technology,Zhengzhou 450002,China)

(2.School of Mathematics and Statistics,Huazhong University of Science and Technology,Wuhan 430074,China)

THE MINIMAL SOLUTION OF A SPECIAL ANTICIPATED BACKWARD STOCHASTIC DIFFERENTIAL EQUATION

TU Shu-heng1,LIAO Jun-jun2

(1.School of Science,Henan University of Technology,Zhengzhou 450002,China)

(2.School of Mathematics and Statistics,Huazhong University of Science and Technology,Wuhan 430074,China)

In this paper,we study the problem of a minimal solution to a special class of anticipated backward stochastic differential equation.When the generator is continuous and satisfying a similar linear growth condition,we prove the existence of minimal solutions.Here,our hypotheses are weaker than the before papers,however,we obtain a better lemma and the same result.

anticipated backward stochastic differential equations;minimal solution;comparison theorem

2010 MR Subject Classification:60H99;60G99

Document code:AArticle ID:0255-7797(2016)05-0940-09

1 Introduction

The notions of non-linear backward stochastic differential equations(BSDEs)were introduced by Pardoux and Peng[11].A solution of this equation,associated with a terminal value ξ and a generator or coefficient f(t,ω,y,z),is a couple of adapted stochastic processes (Y(t),Z(t)){t∈[0,T]}such that

where W is a d-dimensional standard Brownian motion.This type of nonlinear backward stochastic differential equations were first studied by Pardoux and Peng in[11],and they established the existenceness and uniqueness of adapted solution under the global Lipschitz condition.Since then,many people try to weaken the conditions of generators to get the same results and study some different forms of BSDEs.For examples,Aman and Nz'i[1]studied BSDEs with oblique reflection and local Lipschitz.Bahlali[2]studied backwardstochastic differential equations with locally Lipschitz coefficients.Situ[9]and Royer[10]studied BSDEs with jumps.It is now well-known that BSDEs provide a useful framework for formulating a lot of mathematical problems such as used in financial mathematics,optimal control,stochastic games and partial differential equations(see[12-14]).Based on the above applications,specially in the field of finance,and optimal control,recently,a new type of BSDEs,called anticipated BSDEs(ABSDEs),were introduced by Peng and Yang[4]as the following

where θ(·):[0,T]→R+,?(·):[0,T]→R+are continuous functions and satisfy that (i)there exists a constant K≥0 such that for each t∈[0,T],

(ii)there exists a constant L≥0 such that for each t∈[0,T]and each nonnegative integrable function g(·),

Under global Lipschitz conditions,Peng and Yang proved the existencenee and uniqueness of solution(see Theorem 4.2 in[4]).

For anticipated BSDEs,we mention that the generator includes not only the values of solutions of presents but also the future.So ABSDEs may be used in finance.From Theorem 2.1 in[4],we know that there is a duality between stochastic differential equations with delay and anticipated BSDEs which can be used in optimal control.We also mention that,following Peng and Pardoux[11],many papers were devoted to BSDEs with continuous coefficients.Especially,many scholars studied the minimal solution of BSDEs,it is refered to[3,5-8].

Motivated by the above papers,in this paper,we study a special class of 1-dimension ABSDEs as the following

2 Main Reaults

Before starting our main results,we give some necessary notions and hypotheses.

2.1 Preliminaries

Let(?,F(xiàn),P)be a complete probability space,and let(W(t))t∈[0,T]be a d-dimensional standard Brownian motion on(?,F(xiàn),P).Let{Ft}t∈[0,T]be the natural filtration generated by W.

·L2(FT;R){R-valued FT-measurable random variables such that E[|ξ|2]<∞};

We also need the following assumptions.

(H1)Assume that for all t∈[0,T],g(t,ω,y,z,μ):[0,T]×?×R×Rd×L2(Fr;R)→L2(Ft;R),where r∈[t,T+K],and g satisfies the following conditions

moreover,u1(t)≤u1(t+θ(t)),θ(t)satisfies(i)and(ii).

Lemma 2.1 Set

then gn(t,y,z,μ(r))has the following properties.

(a)Linear growth:for any t∈[0,T],y∈R,z∈Rd,μ(·)∈L2(Fr;R),r∈[t,T+K],we have

(b)Monotone property in n:for any t∈[0,T],y∈R,z∈Rd,μ(·)∈L2(Fr;R),r∈[t,T+K],gn(t,y,z,μ(r))≤gn+1(t,y,z,μ(r))≤g(t,y,z,μ(r)),and gn(t,y,z,·)is increasing.

(c)Lipschitz condition:for any t∈[0,T],y,y'∈R,z,z'∈Rd,μ(·),μ'(·)∈L2(Fr;R),r∈[t,T+K],|gn(t,y,z,μ(r))-gn(t,y',z',μ'(r))|≤u1(t)|y-y'|+u2(t)|z-z'|+u1(t)EFt|μ(r)-μ'(r)|.

Proof We use the similar method as used in[3,6]to prove(a),(b)and(c)are obvious. We only need to prove(d).By the definition of infimum,for each n∈N,n>1,there exist un∈R,qn∈Rd,νn∈L2(Ft;R),r∈[t,T+K],such that

For the above proof,we apply the triangle inequality a±-b±≤(a-b)±and a-=(-a)+. Thus we have

Since E[|EFt(μn(r))-|2]≤E[EFt|(μn(r))|2]≤E|μn(r)|2<∞,then when n∈N,n>1,we derive

therefore

For an appropriate A>0,there exists a N>0,such that for any n>N,

and

Then

By the above inequality,we know{EFt(μn(r)-νn(r))+;n∈N,n>1}is bounded in L2(Ft;R),with(2.4),we get

Since g is continuous in L2(F;R),we have

From assumption(H3),we obtain(t,yn,zn,μn(r))=g(t,y,z,μ(r)).

Consider the following equations

where l(t,y,z,μ(r))=C(ft+|y|+|z|+EFt(μ(r))-),by the comparison theorem in[4],for any t∈[0,T+K],n≥m,m,n∈N,U(t)≥Yn(t)≥Ym(t)a.e..

Before giving our main result,we give the following lemma.

Thus by(H1)-(H3),(i),(ii)in introduction and Lemma 2.1(b),Young's inequality,F(xiàn)ubini's lemma,(a+b+c)2≤C(a2+b2+c2),H¨older's inequality,we have

By Gronwall's lemma,we obtain

Thus

Theorem 2.3(Minimal-solution theorem)Under assumptions(H1)-(H3),(i),(ii),equation(1.2)has a minimal solution,that is ifY'is another solution of equation(1.2). Then for any given terminal value ξ(·)∈(T,T+K;R),we have

By Lemma 2.1,Lemma 2.2,we have

Thus

Furthermore,there exists a subsequence of{n},which we still denote this subsequence by {n}such that

By the linear growth,we get

while

Thus

Using the similar method,we get

Controled convergence theorem leads to

By BDG inequality,we have

Thus there exists a subsequence,which we still denote by{n}such that

Then(Y,Z)is a solution of equation(1.2).Now,we are going to prove Y is a minimal solution of equation(1.2).Assume(Y',Z')is another solution of equation(1.2),by the comparison theorem in[4],we have Y(t)≤Y'(t)a.e.for any t∈[0,T+K].The proof is completed.

References

[1]Aman A,N'zi M.Backward stochastic differential equations with oblique reflection and local Lipschitz drift[J].J.Appl.Math.Stoch.Anal.,2003,16:295-309.

[2]Bahlali K.Backward stochastic differential equations with locally Lipschitz coefficient[J].Comptes Rendus de l'Acad′emie des Sci.-Ser.I-Math.,2001,333:481-486.

[3]Lepeltier J,Martin J.Backward stochastic differential equations with continuous coeffcients[J].Stat. Prob.Lett.,1997,32:425-430.

[4]Peng Shige,Yang Zhe.Anticipated backward stochastic differential euquations[J].Ann.Prob.,2009,37,877-902.

[5]Hamad`ene S.Multi-dimensional BSDE with uniformly continuous coefficients[J].Bernoulli,2003,9:571-534.

[6]Fan Shengjun,Jiang Long.Existence and uniqueness result for a backward stochastic differential equation whose generator is Lipschitz continuous in y and uniformly continuous in z[J].J.Appl. Math.Comput.,2011,36(1):1-10.

[7]Fan Shengjun,Ma Ming Jiang,Song Xing.On the levi type theorem for minimal solutions of bsde with continuous coefficients E[J].J.Math.,2011,31(2):245-250.

[8]Jia Guangyan.Some uniqueness results for one-dimensional BSDEs with uniformly continuous coefficients[J].Stat.Prob.Lett.,2009,79(4):436-441.

[9]Situ R.On solutions of backward stochastic differential equations with jumps and applications[J]. Stoch.Proc.Appl.,1997,66(2):209-236.

[10]Royer M.Backward stochastic differential equations with jumps and related non-linear expectations[J].Stoch.Proc.Appl.,1997,66:209-236.

[11]Pardoux E,Peng Shige.Adapted solution of backward stochastic differential equation[J].Syst.Cont. Lett.,1990,4:55-61.

[12]Peng Shige.Backward stochastic differential equation and exact controllability of stochastic control systems[J].Prog.Nat.Sci.,1994,4(3):274-284.

[13]Peng Shige.Nonlinear expectations,nonlinear evaluations and risk measures.In stochastic methods in Finance[M].Berlin:Lecture Notes Math.Springer,2004.

[14]Peng Shige,Xu Mingyu.Reflected BSDE with a constraint and its applications in an incomplete market[J].Bernoulli,2010,16(3):614-640.

一類特殊的延遲倒向隨機微分方程的最小解

凃淑恒1,廖俊俊2
(1.河南工業(yè)大學理學院,河南鄭州450002)
(2.華中科技大學數(shù)學與統(tǒng)計學院,湖北武漢430074)

本文研究一類特殊的延遲倒向隨機微分方程最小解的相關問題.當假設生成子滿足連續(xù)性假設和類似線性增長條件時,證明了最小解的存在性.本文推廣了最小解存在的一般假設條件,這里假設要弱于之前的文獻,然而本文得到了更好的引理,并且得到了相同的結論.

延遲倒向隨機微分方程;最小解;比較定理

MR(2010)主題分類號:60H99;60G99O211.63

date:2014-09-05Accepted date:2014-11-05

Supported by National Natural Science Foundation of China(10671182).

Biography:Tu Shuheng(1986-),female,born at Xinyang,Henan,doctor,major in probability,stochastic analysis.

Liao Junjun.

主站蜘蛛池模板: 日韩二区三区无| 日韩免费无码人妻系列| 国产精品自在线天天看片| 日韩国产亚洲一区二区在线观看| 免费A级毛片无码无遮挡| 国产原创自拍不卡第一页| 中文成人无码国产亚洲| 中文国产成人久久精品小说| 久久久久青草大香线综合精品 | 国产成人高精品免费视频| 亚洲最黄视频| 欧美日韩免费在线视频| 人妻中文字幕无码久久一区| 国产精品青青| 88国产经典欧美一区二区三区| 欧美在线一二区| 欧美日韩中文字幕二区三区| 亚洲一区二区约美女探花| 国产精品女在线观看| 国产精品白浆无码流出在线看| 亚洲人成亚洲精品| 亚洲欧洲AV一区二区三区| 日韩在线第三页| 22sihu国产精品视频影视资讯| 日韩欧美视频第一区在线观看| 亚洲综合中文字幕国产精品欧美| 露脸一二三区国语对白| 日韩毛片在线视频| 色综合久久综合网| 手机精品福利在线观看| 高潮毛片免费观看| av一区二区三区高清久久| 找国产毛片看| 亚洲无码高清视频在线观看| 亚卅精品无码久久毛片乌克兰| 国产欧美日韩免费| 久久人体视频| 永久免费无码成人网站| www欧美在线观看| 免费一级成人毛片| 国产亚洲欧美在线中文bt天堂 | 夜夜操天天摸| 国产精品一区不卡| 操国产美女| 亚洲日韩国产精品综合在线观看| 精品欧美一区二区三区久久久| 亚洲欧美综合另类图片小说区| 日本人又色又爽的视频| 91蝌蚪视频在线观看| a级毛片在线免费| 婷婷亚洲天堂| 色综合久久88色综合天天提莫 | 中文字幕亚洲综久久2021| 亚洲人人视频| 国产乱子伦视频在线播放| 国产欧美日韩18| 在线观看国产精美视频| 国产亚洲精品va在线| 毛片基地视频| 国产精品人莉莉成在线播放| 一级高清毛片免费a级高清毛片| 高清色本在线www| 蜜桃视频一区二区| 亚洲精品少妇熟女| 伊人蕉久影院| 国产无人区一区二区三区| 91亚洲视频下载| 中文字幕人成乱码熟女免费| 久青草国产高清在线视频| 一级毛片高清| 自慰高潮喷白浆在线观看| 日韩成人在线视频| 日韩精品免费在线视频| 国产浮力第一页永久地址 | 在线视频亚洲色图| 无码在线激情片| 一本色道久久88亚洲综合| 114级毛片免费观看| 久无码久无码av无码| 亚洲av片在线免费观看| 国产美女精品人人做人人爽| 欧美一级黄片一区2区|