999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

NUMERICAL STABILITY ANALYSIS FOR EQUATION x')t)=ax)t)+bx)3[)t+1)/3])

2016-10-13 08:12:18WANGQiWANGXiaomingCHENXuesong
數學雜志 2016年5期
關鍵詞:方法

WANG Qi,WANG Xiao-ming,CHEN Xue-song

(School of Applied Mathematics,Guangdong University of Technology,Guangzhou 510006,China)

NUMERICAL STABILITY ANALYSIS FOR EQUATION x')t)=ax)t)+bx)3[)t+1)/3])

WANG Qi,WANG Xiao-ming,CHEN Xue-song

(School of Applied Mathematics,Guangdong University of Technology,Guangzhou 510006,China)

2010 MR Subject Classification:65L07;65L20

Document code:AArticle ID:0255-7797(2016)05-0955-08

1 Introduction

We are interested in the numerical stability of the Euler-Maclaurin method for the following differential equation with piecewise constant arguments(EPCA):

where t>0,a/=0,b and x0are real constants and[·]denotes the greatest integer function.

EPCA belongs to one special kind of delay differential equations[1-3].They described hybrid dynamical systems and combine properties of both differential and difference equations.So EPCA had many applications in science and engineering.In the past twenty years,many researchers investigated the properties of the exact solution of EPCA(see[4-6]and the references therein).In particularly,stability of solutions of EPCA received much attention(see[7-9]and the extensive bibliography therein).For more information on this type of equations,the interested readers can refer Wiener's book[10].Recently,special interest was shown to the properties of numerical solution of EPCA,such as stability[11,12],dissipativity[13]and oscillation[14].In this paper,we will study the stability of the numericalsolution in the Euler-Maclaurin method for(1.1).Whether the numerical method preserves stability of the exact solution is considered.Two numerical examples for demonstrating the theoretical results are also provided.

The following results give the definition and stability of exact solution for(1.1).

Definition 1.1(see[10])A solution of(1.1)on[0,∞)is a function x(t)which satisfies the conditions

(i)x(t)is continuous on[0,∞);

(ii)the derivative x'(t)exists at each point t∈[0,∞),with the possible exception of the points t=3n-1 for n∈N,where one-sided derivatives exist;

(iii)(1.1)is satisfied on each interval[3n-1,3n+2)for n∈N.

Theorem 1.2(see[10])Assume that a,b and x0∈R,then(1.1)has on[0,∞)a unique solution x(t)given by

where

Theorem 1.3(see[10])The solution x(t)=0 of(1.1)is asymptotically stable(x(t)→0 as t→∞)if and only if any one of the following conditions is satisfied

whereˉa is the nonzero solution of equation φ(x)=e3x-2ex+1=0.

2 Stability of Numerical Solution

2.1 The Euler-Maclaurin Method

Let h be a given stepsize,m≥1 be a given integer and satisfies h=1/m.The gridpoints tibe defined by ti=ih(i=0,1,2,···).Applying the Euler-Maclaurin formula to(1.1),we have

which is equivalent to

where

Thus

Similar to Theorem 2.2 in[14],we have the following result for convergence.

Theorem 2.1For any given n∈N,the Euler-Maclaurin method is of order 2n+2. 2.2 Stability Analysis

Definition 2.2 The Euler-Maclaurin method is called asymptotically stable at(a,b)if there exists a constant M0such that xndefined by(2.3)tends to zero as n→∞for all h=1/m and any given x0.

Lemma 2.3(see[15])If|z|<1,then Φ(z)≥1/2 for z>0 and Φ(z)≥1 for z<0.

Lemma 2.4(see[15])If|z|<1,then

for n is even and

for n is odd.

Theorem 2.5The Euler-Maclaurin method is asymptotically stable if any one of the following conditions is satisfied

ProofLet

and

so we need to verify

Then(2.6)is equivalent to

Then(2.6)is equivalent to

The proof is completed.

The following two lemmas are given naturally.

Lemma 2.6 Let f(r)=r3-2r+1,r>0,then

(a)the function f(r)has a minimum at r1=,and f(r)is decreasing in[0,r1) and increasing in[r1,+∞);

(b)the function f(r)has a unique solution 1>r0/=1;

(c)f(r)<0 if r∈[r0,1)and f(r)>0 if r∈[0,r0)or r∈[1,+∞).

Lemma 2.7 Let

then

(a)the function g(ω)has extremum at ω1=

(b)g(ω)is increasing in(0,r0)and(r0,ω1);

(c)g(ω)is decreasing in(ω1,1)and(1,+∞).

By Lemmas 2.6 and 2.7,we obtain

Corollary 2.8 Assume that r0/=1 is a unique solution of the function f(r)=r3-2r+1,then r0<ω1<r1<1.

So we have the following result.

Theorem 2.9Assume that(1.1)is asymptotically stable,then the Euler-Maclaurin method is asymptotically stable if one of the following conditions is satisfied

(a)R(z)m≤ea(a≤lnω1);

(b)R(z)m≥ea(lnω1<a<0);

(c)R(z)m≤ea(a≥0).

ProofIn view of Theorems 1.2 and 2.5,we will prove that condition(2.5)is satisfied under condition(1.2).

If(a)holds,then we know from Lemmas 2.3 and 2.4 that f(r)is decreasing and g(ω)is increasing.Henceˉa<a0and

From Lemmas 2.3,2.4 and Theorem 2.9,we have the following main result in this paper.

Theorem 2.10The Euler-Maclaurin method preserves the stability of(1.1)if one of the following conditions is satisfied

(a)n is odd if ea>ω1,

(b)n is even if ea≤ω1.

3 Numerical Experiments

Consider the following two problems

and

In Figures 1 and 2,we plot the exact solution and the numerical solution for(3.1),respectively.Moreover,for(3.2),we also plot the exact solution and the numerical solution in Figures 3 and 4,respectively.We can see from these figures that the Euler-Maclaurin method preserves the stability of(3.1)and(3.2),which is coincide with Theorem 2.10.

AcknowledgementsThe authors would like to thank the anonymous reviewers for their careful reading.Many thanks to Professors Mingzhu Liu,Minghui Song and Zhanwen Yang for their great help and valuable suggestions.

Figure 1:the exact solution of(3.1)

Figure 2:the numerical solution of(3.1)with n=3 and m=50

Figure 3:the exact solution of(3.2)

Figure 4:the numerical solution of(3.2)with n=2 and m=40

References

[1]Cheng Shengmin,Zhou Shaobo.Convergence and stability of numerical methods for stochastic differential delay equation[J].J.Math.,2014,34(6):1073-1084.

[2]Wang Xiao,Cui Cheng,Xiao Li,et al.Existence and uniqueness of solutions for differential equations with time delay and impulsive differential equations with time delay[J].J.Math.,2013,33(4):683-688.

[3]Ashyralyev A,Agirseven D.On convergence of difference schemes for delay parabolic equations[J]. Comput.Math.Appl.,2013,66(7):1232-1244.

[4]Cooke K L,Wiener J.Retarded differential equations with piecewise constant delays[J].J.Math. Anal.Appl.,1984,99(1):265-297.

[5]Wiener J,Aftabizadeh A R.Differential equations alternately of retarded and advanced type[J].J. Math.Anal.Appl.,1988,129(1):243-255.

[6]Liang Haihua,Wang Genqiang.Oscillation criteria of certain third-order differential equation with piecewise constant argument[J].J.Appl.Math.,2012,2012:1-18.

[7]Alwan M S,Liu Xinzhi,Xie Weichau.Comparison principle and stability of differential equations with piecewise constant arguments[J].J.Franklin I.,2013,350(2):211-230.

[8]Akhmet M U.Stability of differential equations with piecewise constant arguments of generalized type[J].Nonl.Anal.,2008,68(4):794-803.

[9]Li Huaixing,Muroya Y,Nakata Y,et al.Global stability of nonautonomous logistic equations with a piecewise constant delay[J].Nonl.Anal.,RWA,2010,11(3):2115-2126.

[10]Wiener J.Generalized solutions of functional differential equations[M].Singapore:World Scientific,1993.

[11]Song Minghui,Yang Zhanwen,Liu Mingzhu.Stability of θ-methods for advanced differential equations with piecewise continuous arguments[J].Comput.Math.Appl.,2005,49(9-10):1295-1301.

[12]Liang Hui,Liu Mingzhu,Yang Zhanwen.Stability analysis of Runge-Kutta methods for systems u'(t)=Lu(t)+Mu([t])[J].Appl.Math.Comput.,2014,228(1):463-476.

[13]Wang Wansheng,Li Shoufu.Dissipativity of Runge-Kutta methods for neutral delay differential equations with piecewise constant delay[J].Appl.Math.Lett.,2008,21(9):983-991.

[14]Liu Mingzhu,Gao Jianfang,Yang Zhanwen.Preservation of oscillations of the Runge-Kutta method for equation x'(t)+ax([t])+a1x([t-1])=0[J].Comput.Math.Appl.,2009,58(6):1113-1125.

[15]L¨u Wanjin,Yang Zhanwen,Liu Mingzhu.Stability of the Euler-Maclaurin methods for neutral differential equations with piecewise continuous arguments[J].Appl.Math.Comput.,2007,186(2):1480-1487.

In this paper,we investigate the numerical stability of Euler-Maclaurin method for differential equation with piecewise constant arguments x'(t)=ax(t)+bx(3[(t+1)/3]).By the method of characteristic analysis,the sufficient conditions of stability for the numerical solution are obtained.Moreover,we show that the Euler-Maclaurin method preserves the stability of the exact solution.Finally,some numerical examples are given.

Euler-Maclaurin method;piecewise constant arguments;stability;numerical solution

方程x')t)=ax)t)+bx)3[)t+1)/3])的數值穩定性分析

王琦,汪小明,陳學松
(廣東工業大學應用數學學院,廣東廣州510006)

date:2014-08-30Accepted date:2015-03-16

Supported by National Natural Science Foundation of China(11201084);China Postdoctoral Science Foundation(2013M531842)and Science and Technology Program of Guangzhou (2014KP000039).

本文研究了分段連續型微分方程x'(t)=ax(t)+bx(3[(t+1)/3])Euler-Maclaurin方法的數值穩定性問題.利用特征分析的方法,獲得了數值解穩定的充分條件,進而證明了Euler-Maclaurin方法保持了精確解的穩定性.最后給出了一些數值例子.

Euler-Maclaurin方法;分段連續項;穩定性;數值解

MR(2010)主題分類號:65L07;65L20O241.81

Biography:Wang Qi(1978-),male,born at Yichun,Heilongjiang,associate professor,major in numerical computation of differential equation.

猜你喜歡
方法
中醫特有的急救方法
中老年保健(2021年9期)2021-08-24 03:52:04
高中數學教學改革的方法
河北畫報(2021年2期)2021-05-25 02:07:46
化學反應多變幻 “虛擬”方法幫大忙
變快的方法
兒童繪本(2020年5期)2020-04-07 17:46:30
學習方法
用對方法才能瘦
Coco薇(2016年2期)2016-03-22 02:42:52
最有效的簡單方法
山東青年(2016年1期)2016-02-28 14:25:23
四大方法 教你不再“坐以待病”!
Coco薇(2015年1期)2015-08-13 02:47:34
賺錢方法
捕魚
主站蜘蛛池模板: 色香蕉网站| 18禁不卡免费网站| 中国丰满人妻无码束缚啪啪| 精品丝袜美腿国产一区| 色哟哟精品无码网站在线播放视频| 国产成人精品一区二区不卡| 亚洲福利片无码最新在线播放 | 香蕉精品在线| 2020久久国产综合精品swag| 久久网综合| 99这里只有精品免费视频| 中文字幕1区2区| 无码日韩精品91超碰| 97se亚洲| 中文字幕在线看视频一区二区三区| 国产精品思思热在线| 亚洲精品无码高潮喷水A| 无码精品福利一区二区三区| 99视频在线精品免费观看6| 国产精品任我爽爆在线播放6080| 2020亚洲精品无码| 国产在线精品美女观看| 91国内在线观看| 欧美日韩国产在线人成app| 极品私人尤物在线精品首页| 亚洲精品无码av中文字幕| 国产精品自拍露脸视频| 国产h视频在线观看视频| 1024国产在线| 成人福利在线免费观看| 午夜a级毛片| 婷婷色狠狠干| 午夜a视频| 尤物精品国产福利网站| 国产人成在线观看| 熟女成人国产精品视频| 久久永久视频| 国产一区二区精品高清在线观看| 性激烈欧美三级在线播放| 萌白酱国产一区二区| 国产成人精品一区二区不卡| 99在线观看视频免费| 亚洲性视频网站| 欧美日韩久久综合| 国产欧美日韩视频一区二区三区| 在线亚洲小视频| 男女猛烈无遮挡午夜视频| 亚洲无码电影| 在线毛片网站| 不卡色老大久久综合网| 国产在线啪| 免费高清毛片| 国产成人高清精品免费软件| 成年看免费观看视频拍拍| 精品午夜国产福利观看| 久久国产乱子| 91在线播放国产| 国产精品手机在线播放| 色婷婷在线播放| 亚洲精品制服丝袜二区| 久久国产黑丝袜视频| 亚洲综合国产一区二区三区| 午夜福利在线观看成人| 国产精品无码制服丝袜| 天天视频在线91频| 欧美在线观看不卡| 国产欧美日韩在线在线不卡视频| 午夜天堂视频| 国产亚洲精品无码专| 精品视频在线一区| 久久国产精品夜色| 尤物精品国产福利网站| 中文字幕无码中文字幕有码在线| 91青草视频| 精品自窥自偷在线看| 人妻丰满熟妇αv无码| 亚洲欧洲日韩久久狠狠爱| 欧美啪啪网| 一本久道久久综合多人| 色综合a怡红院怡红院首页| 亚洲成人网在线观看| 精品国产美女福到在线不卡f|