999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A NOTE ON CYCLIC CODES OVER Fpm+uFpm+u2Fpm

2016-10-13 08:12:21LIUXiusheng
數(shù)學(xué)雜志 2016年5期
關(guān)鍵詞:分類方法

LIU Xiu-sheng

(School of Mathematics and Physics,Hubei Polytechnic University,Huangshi 435003,China)

A NOTE ON CYCLIC CODES OVER Fpm+uFpm+u2Fpm

LIU Xiu-sheng

(School of Mathematics and Physics,Hubei Polytechnic University,Huangshi 435003,China)

In this paper,we study cyclic codes of length psover the ring Fpm+uFpm+u2Fpm. By establishing the homomorphism from ring Fpm+uFpm+u2Fpmto ring Fpm+uFpm,we give the new classify method for cyclic codes of length psover the ring Fpm+uFpm+u2Fpm.Using the method of the classify,we obtain the number of codewords in each of cyclic codes of length psover ring Fpm+uFpm+u2Fpm.

local ring;cyclic codes;repeated-root codes;the number of codewords

2010 MR Subject Classification:94B05;94B15

Document code:AArticle ID:0255-7797(2016)05-0981-06

1 Introduction

Let Fpmbe a finite field with pmelements,where p is a prime and m is an integer number. Let R be the commutative ring Fpm+uFpm+u2Fpm={a+bu+cu2|a,b,c∈Fpm}with u3=0.The ring R is a chain ring,which has a unique maximal ideal〈u〉={au|a∈Fpm}(see[3]).A code of length n over R is a nonempty subset of Rn,and a code is linear over R if it is an R-submodule of Rn.Let C be a code of length n over R and P(C)be its polynomial representation,i.e.,

The notions of cyclic shift and cyclic codes are standard for codes over R.Briefly,for the ring R,a cyclic shift on Rnis a permutation T such that

A linear code over ring R of length n is cyclic if it is invariant under cyclic shift.It is known that a linear code over ring R is cyclic if and only if P(C)is an ideal of[5]).

The following two theorems can be found in[1].

Theorem 1.1

Type 1〈0〉,〈1〉.

Type 2 I=〈u(x-1)i〉,where 0≤i≤ps-1.

Type 4 I=〈(x-1)i+(x-1)j,u(x-1)w〉,where 1≤i≤ps-1,c1j∈Fpm,w<l and w<T,where T is the smallest integer such that u(x-1)T∈〈(x-1)i+(x-1)j〉;or equivalently,〈(x-1)i+u(x-1)th(x),u(x-1)w〉,with h(x)as in Type 3,and deg(h)≤w-t-1.

Theorem 1.2 Let C be a cyclic code of length psover Fpm+uFpm,as classified in Theorem 1.1.Then the number of codewords nCof C is determined as follows.

If C=〈0〉,then nC=1.

If C=〈1〉,then nC=p2mps.

If C=〈u(x-1)i〉,where 0≤i≤ps-1,then nC=pm(ps-i).

If C=〈(x-1)i〉,where 1≤i≤ps-1,then nC=p2m(ps-i).

If C=〈(x-1)i+u(x-1)th(x)〉,where 1≤i≤ps-1,0≤t<i,and h(x)is a unit,then

If C=〈(x-1)i+u(x-1)th(x),u(x-1)κ〉,where 1≤i≤ps-1,0≤t<i,either h(x)is 0 or h(x)is a unit,and

then nC=pm(2ps-i-κ).

Recently,Liu and Xu[3]studied constacyclic codes of length psover R.In particular,they classified all cyclic codes of length psover R.But they did not give the number of codewords in each of cyclic codes of length psover R.In this note,we study repeatedroot cyclic codes over R by using the different method from[2],and obtain the number of codewords in each of cyclic codes of length psover R.

2 Cyclic Codes of Length psover R

Cyclic codes of length psover R are ideals of the residue ring R1= to prove the ring R1is a local ring with the maximal ideal〈u,x-1〉,but it is not a chain ring.

We can list all cyclic codes of length psover R1as follows.

Type 1〈0〉,〈1〉.

Type 2I=〈u2(x-1)k〉,where 0≤k≤ps-1.

Type 5I=〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x)〉,where 1≤i≤ps-1,0≤t<i,0≤z<i and h1(x),h2(x)are similar to h(x)in Type 3.

Type 6I=〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x),u2(x-1)η〉,where 1≤i≤ps-1,0≤t<i,0≤z<i,h1(x),h2(x)are similar to h(x)in Type 3,η<i,and η is the smallest integer such that u2(x-1)η∈〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x)〉.

Type 8I=〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x),u(x-1)q+u2e2j(x-1)j,u2(x-1)σ〉,where 1≤i≤ps-1,σ<q≤i,0≤t≤i,0≤z≤i,q<T≤i,T is the smallest integer such that u(x-1)T∈〈(x-1)i+u(x-1)th1(x)〉,and σ is the smallest integer such that u2(x-1)σ∈〈u(x-1)q+u2e2j(x-1)j〉,and h1(x),h2(x)are similar to h(x)in Type 3.

Proof Ideals of Type 1 are the trivial ideals.Consider an arbitrary nontrivial ideal of R1.

Start with the homomorphism φ:Fpm+uFpm+u2Fpm→Fpm+uFpmwith φ(a+ub+ u2c)=a+ub.This homomorphism then can be extended to a homomorphism of rings of polynomials

by letting φ(c0+c1x+···+cps-1xps-1)=φ(c0)+φ(c1)x+···+φ(cps-1)xps-1.Note that Kerφ=.

Now,let us assume that I is a nontrivial ideal of R1.Then φ(I)is an ideal of.But ideals ofare characterized.So we can make use of these results.

On the other hand,Kerφ is also an ideal of.We can consider it to be u2times a ideal of.This means that we can again use the results in the aforementionedpapers.By using the characterization in[2],we have

For φ(I),by using the characterization in[1],we shall discuss φ(I)by carrying out the following cases.

Case 1 φ(I)=0.Then I=〈u2(x-1)k〉,where 0≤k≤ps-1.

Case 2 φ(I)/=0.We now have seven subcases.

Case 2a φ(I)=〈u(x-1)l〉,where 0≤l≤ps-1.

If Kerφ/=0,then Kerφ=〈u2(x-1)w〉,where 0≤w≤ps-1.Hence

If Kerφ/=0,then

or

where 1≤i≤ps-1,c1j,c2j∈Fpm,η<i,η is the smallest integer such that u2(x-1)η∈〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x)〉,and h1(x),h2(x)are similar to h(x)in Type 3.

Case 2c φ(I)=〈(x-1)i+u(x-1)th1(x),u(x-1)q〉,where 1≤i≤ps-1,0≤t≤i,q<T,and T is the smallest integer such that u(x-1)T∈〈(x-1)i+u(x-1)th1(x)〉,h1(x)is similar to h(x)in Type 3.

Theorem 2.2 Let C be a cyclic code of length psover R,as classified in Theorem 2.1. Then the number of codewords nCof C is determined as follows.

If C=〈0〉,then nC=1.

If C=〈1〉,then nC=p3mps.

If C=〈u2(x-1)k〉,where 0≤k≤ps-1,then nC=pm(ps-k).

If C=〈(x-1)i〉,where 1≤i≤ps-1,then nC=p2m(ps-i).

If C=〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x)〉,where 1≤i≤ps-1,0≤t<i,0≤z<i and h1(x)is a unit,then

If C=〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x),u2(x-1)η〉,where 1≤i≤ps-1,0≤t<i,0≤z<i,h1(x)is a unit,η<i,η is the smallest integer such that u2(x-1)η∈〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x)〉,and h1(x)is a unit,then

then nC=pm(2ps-i-q).

then nC=p3mps-m(i+q+σ).

References

[1]Dinh H Q.Constacyclic codes of length psover Fpm+uFpm[J].J.Alg.,2010,324:940-950.

[2]Dinh H Q.On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions[J].Finite Field Appl.,2008,14:22-40.

[3]Liu X S,Xu X.Some classes of repeated-root constacyclic codes over Fpm+uFpm+u2Fpm[J].J. Korean Math.Soc.,2014,51(4):853-866.

[5]Hammous A,Kumar P V,Calderbark A R,Sloame J A,Sol′e P.The Z4-linearity of Kordock,Preparata,Goethals,and releted codes[J].IEEE Trans.Inform.The.,1994,40:301-319.

[5]Huffman W C,Pless V.Fundamentals of error-correcting codes[M].Cambridge:Cambridge Univ. Press,2003.

關(guān)于環(huán)Fpm+uFpm+u2Fpm上循環(huán)碼的注記

劉修生
(湖北理工學(xué)院數(shù)理學(xué)院,湖北黃石435003)

本文研究了環(huán)Fpm+uFpm+u2Fpm上長度為ps的循環(huán)碼分類.通過建立環(huán)Fpm+uFpm+ u2Fpm到環(huán)Fpm+uFpm的同態(tài),給出了環(huán)Fpm+uFpm+u2Fpm上長度為ps的循環(huán)碼的新分類方法.應(yīng)用這種方法,得到了環(huán)Fpm+uFpm+u2Fpm長度為ps的循環(huán)碼的碼詞數(shù).

局部環(huán);循環(huán)碼;重根循環(huán)碼;碼詞數(shù)

MR(2010)主題分類號(hào):94B05;94B15O157.4

date:2015-11-16Accepted date:2016-03-04

Supported by Scientific Research Foundation of Hubei Provincial Education Department of China(D20144401;B2015096)and the National Science Foundation of Hubei Polytechnic University of China(12xjz14A).

Biography:Liu Xiusheng(1960-),male,born at Daye,Hubei,professor,major in groups and algebraic coding,multiple linear algebra.

猜你喜歡
分類方法
分類算一算
垃圾分類的困惑你有嗎
大眾健康(2021年6期)2021-06-08 19:30:06
學(xué)習(xí)方法
分類討論求坐標(biāo)
數(shù)據(jù)分析中的分類討論
教你一招:數(shù)的分類
用對(duì)方法才能瘦
Coco薇(2016年2期)2016-03-22 02:42:52
四大方法 教你不再“坐以待病”!
Coco薇(2015年1期)2015-08-13 02:47:34
賺錢方法
給塑料分分類吧
主站蜘蛛池模板: 亚洲成人网在线观看| 国产99视频精品免费视频7 | 粗大猛烈进出高潮视频无码| 成人精品视频一区二区在线| 99久久精彩视频| аv天堂最新中文在线| 欧美激情综合| 国产va在线观看免费| 中文字幕在线视频免费| 蜜臀AVWWW国产天堂| 国产综合无码一区二区色蜜蜜| 爱色欧美亚洲综合图区| 久久久亚洲色| 97人妻精品专区久久久久| 亚洲女人在线| 中文字幕乱码中文乱码51精品| 亚洲无码熟妇人妻AV在线| 黄色网址手机国内免费在线观看| 成人国产小视频| 国产精品福利在线观看无码卡| 亚洲AV无码不卡无码| 精品国产乱码久久久久久一区二区| 精品福利网| 久久成人免费| 在线看国产精品| 新SSS无码手机在线观看| 亚洲福利片无码最新在线播放| 日韩成人午夜| 亚洲黄网视频| 91精品日韩人妻无码久久| 亚洲国产成人久久77| 91无码人妻精品一区| 她的性爱视频| 黄色网站在线观看无码| 久久久久久久久久国产精品| 国产96在线 | 黄色福利在线| 国产美女在线观看| 中文字幕波多野不卡一区| 亚洲精品无码高潮喷水A| 亚洲永久视频| 日韩乱码免费一区二区三区| 亚洲人成在线精品| 国产主播喷水| 欧美另类图片视频无弹跳第一页| 国产激爽大片高清在线观看| 亚洲天堂网在线视频| 欧美中出一区二区| 亚洲中文字幕无码爆乳| 亚洲精品欧美日韩在线| 久久精品国产精品一区二区| 亚洲乱强伦| 国产精品亚欧美一区二区| 99这里只有精品在线| 性色一区| 中国特黄美女一级视频| 精品无码专区亚洲| 欧美一级片在线| 国产XXXX做受性欧美88| 91精品在线视频观看| 国产手机在线观看| 永久免费av网站可以直接看的 | 亚洲成人一区二区三区| 亚洲免费黄色网| 精品福利视频网| 91青青视频| 99久久精品久久久久久婷婷| 色国产视频| 国产精品视频a| 男女性色大片免费网站| 亚洲欧洲日产国码无码av喷潮| 国产亚洲第一页| 亚洲区第一页| 中文成人在线| 欧美日韩一区二区三| 日韩国产精品无码一区二区三区| 国产精品欧美激情| 国产毛片基地| 欧美色99| 欧美一级夜夜爽| 日韩无码黄色网站| 午夜视频免费一区二区在线看|