999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

VALUE-AT-RISK AND CONTINUOUS COHERENT RISK MEASURES ON LP-SPACE

2016-10-13 08:12:25CHENYanhongHUYijun
數(shù)學(xué)雜志 2016年5期
關(guān)鍵詞:方法

CHEN Yan-hong,HU Yi-jun

(School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)

VALUE-AT-RISK AND CONTINUOUS COHERENT RISK MEASURES ON LP-SPACE

CHEN Yan-hong,HU Yi-jun

(School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)

In this paper,we study the relation between value-at-risk and continuous coherent risk measures on Lp-space.By using the separation theorem for convex sets and the truncated approximation method,we obtain that VaR can be represented by continuous coherent risk measures on Lp-space.Meanwhile,we get a new method to prove the representation result for the continuous coherent risk measures on Lp-space,which extend the results in[2]from L∞-space to Lp-space,and do some complements of that of Inoue[4],respectively.

Lp-space;continuous coherent risk measures;value at risk

2010 MR Subject Classification:62P05;91B30

Document code:AArticle ID:0255-7797(2016)05-1011-08

1 Introduction

Artzner et al.[1-2]first proposed the concept of coherent risk measures.Further,Delbaen[3]studied coherent risk measures on general probability spaces.Value-at-risk(VaR)is a popular risk measure,especially in practice.However,VaR is not of subadditivity. Artzner et al.[2]and Delbaen[3]provided expressions for VaR in terms of kinds of coherent risk measures on L∞-space.

Coherent risk measures on Lp-space,1≤p<∞,were also studied in the literature,for example[4-9].A natural and interesting issue is how about the relation between VaR and coherent risk measures on Lp-space.So far,we have not found any report on this issue.In this paper,we will provide an expression for VaR in terms of kinds of continuous coherent risk measures on Lp-space.Meanwhile,we also give a proof of the representation result for continuous coherent risk measures on Lp-space.It should be mentioned that Inoue[4]stated the representation for continuous coherent risk measures on Lp-space,1≤p≤∞,but only the proof in L∞-space case was provided.It is well-known that the dual spaces of L∞and Lp(1≤p<∞)are quite distinct.The proof of the representation result for continuous coherent risk measures on Lp-space(1≤p<∞)deserves to be provided.The proof provided in this paper is different from that of Inoue[4].

The rest of the paper is organized as follows.In Section 2,we will introduce preliminaries.The main results will be stated in Section 3.Finally,in Section 4,the proofs of the main results are given.

2 Preliminaries

In this section,we will briefly introduce the preliminaries.Let(?,F(xiàn),P)be a fixed probability space.We denote H=Lp(?,F(xiàn),P)for 1≤p≤+∞.When 1≤p<+∞,H is the space of random variables with finite p-order moment.L∞(?,F(xiàn),P)stands for the space of all essentially bounded random variables on(?,F(xiàn),P).The space H represents financial risk positions.Positive values of X∈H correspond to losses,while negative values correspond to gains.For X∈H,define‖X‖p:=essup|X|,if p=+∞,if 1≤p<∞,where EP(|X|p)means the integral of|X|pwith respect to the probability P,then(H,‖.‖p)is a Banach space.For 1≤p<∞,q means the conjugate index of p,=1(q=∞if p=1).

We introduce more notations.Denote by M1(P)the set of P-absolutely continuous probability measures on(?,F(xiàn),P).For X∈H,we set X∧n:=min(X,n),X+:=max(X,0)and X-:=max(-X,0).Given a set A,1Ameans the indicator function of A.

In general,a risk measure is defined as any function ρ from H to the real numbers R. Given a position X∈H,the quantity ρ(X)is interpreted as the amount of risk capital that the holder of position X has to safely invest,in order to satisfy the regulator.

Definition 2.1(see[4])A risk measure ρ:H→R is called a coherent risk measure,if it satisfies the following four axioms

(A1)Monotonicity:X≥Y implies ρ(X)≤ρ(Y)for any X,Y∈H.

(A2)Translation invariance:ρ(X+a)=ρ(X)-a for any X∈H and a∈R.

(A3)Positive homogeneity:ρ(λX)=λρ(X)for any X∈H and λ≥0.

(A4)Subadditivity:ρ(X1+X2)≤ρ(X1)+ρ(X2)for any X1,X2∈H.

We call that a coherent risk measure ρ:H→R is continuous,if

for any Xn,X∈H.

Remark 2.1 Given a coherent risk measure ρ:H→R,ρ is continuous if and only if there exists C∈(0,∞)such that|ρ(X)|≤C‖X‖p(see[4]).

Definition 2.2(see[3])If X is a real-valued random variable and α∈(0,1),then we say that qα(X)is an α-quantile of X if P[X<qα(X)]≤α≤P[X≤qα(X)].

It is easy to see that the set of quantiles forms a closed interval with endpointsand.These endpoints can be defined as

Definition 2.3(see[10])The quantity V aRα(X):=(X)is called the value at risk at level α for the random variable X.

Definition 2.4(see[11])Two random variables X and Y are called comonotonic,if there is no pair(ω1,ω2)in some ?0with P(?0)=1 such that X(ω1)<X(ω2)and Y(ω1)>Y(ω2).

Definition 2.5(see[11])A risk measure ρ:H→R is called to be of comonotonic additivity,if for all comonotonic X1,X2∈H,we have ρ(X1+X2)=ρ(X1)+ρ(X2).

3 Main Results

In this section,we will state the representation result for continuous coherent risk measures on H,and the relation between VaR and continuous coherent risk measures on H.

Theorem 3.1Let 1≤p<∞.For a risk measure ρ:H→R,the following conditions are equivalent:

(1)The risk measure ρ is a continuous coherent risk measure.

(2)There exists a set G of nonnegative random variables g with EP[g]=1 such that

for any X∈H.

for any X∈H.

Remark 3.1The statement of Theorem 3.1 can also be found in Inoue[4].However,Inoue[4]gave only the proof for X∈L∞.In this paper,we will complement the proof for the case of X∈Lp(?,F(xiàn),P),1≤p<∞.

Now,we are in a position to state another main result of the present paper,which is a generalization of Proposition 5.2 in Artzner et al.[2]and Theorem 6.8 in Delbaen[3].

Theorem 3.2Let 1≤p<∞.For every X∈H and any α with 0<α<1,we have VaRα(X)=inf{ρ(X):ρ is a continuous coherent risk measure on H and ρ≥VaRαon H}.

4 Proofs of Main Results

In this section,we will provide proofs of Theorems 3.1 and 3.2.

First,we will adopt the dual method to prove Theorem 3.1,which can also be seen in Yan[11].

Proof of Theorem 3.1(2)?(3)follows form the Randon-Nikodym theorem.

(2)?(1)is also obvious.Hence,it suffices to prove(1)?(2).To do this we only need to show that for any X∈H,there exists gX∈Lq(?,F(xiàn),P),such that

and

for all Y∈H hold.

In fact,by(4.1)and(4.2),we have

for all X∈H,where G:={gX:X∈H}.

By the translation invariance of ρ,with no loss of generality,we can assume that ρ(X)= 1.Since ρ is a continuous coherent risk measure,by Remark 2.1,there exists C∈(0,∞)such that ρ(X)≤C‖X‖pfor all X∈H.

Let

Then B1?B,X/∈B.Since B is a convex set,by the Hahn-Banach theorem,there exists a nontrivial h∈Lq(?,F(xiàn),P),such that

where h(-X):=EP[(-X)h].Obviously,B1?B,h(-X)>0.As a result,we can choose h such that h(-X)=1.We further claim that h has the following three properties

(1)h(Y)≥0 for any Y≥0,Y∈H.

(2)h(1)=1.

(3)h(-Y)≤ρ(Y)for any Y∈H.

First,we prove(1).For any Y≥0,Y∈H and any s>0,sY∈B.Hence h(-sY)≤h(-X)=1.By arbitrariness of s>0,we conclude that h(Y)≥0.From property(1)we obtain that h is a nonnegative random variable.

Second,we prove(2).On one hand,for any-1<s<0,s∈B.Then h(-s)≤h(-X)= 1,which implies h(1)≤1,because-1<s<0 is arbitrary.

Finally,we prove(3).For any Y,let Y1:=Y+ρ(Y)-1,then for any s>1,∈B, which implies h(-Y1)≤1,because s>1 is arbitrary.Hence h(-Y)≤ρ(Y).From the choice of h and property(3),we obtain(3.2).

Next,we will prove(3.1).Note that ρ is continuous,for any X∈H,

which yields for all g∈G,

Next,we will borrow the idea of the proof of Artzner et al.[2,Proposition 5.2]to prove Theorem 3.2.However,more lemmas and more delicate arguments will be needed.Let us begin with lemmas.

ProofObviously,Xn↑X and Xnis an increasing sequence and)is an upper bound of).That is,

for any n≥M.Hence

Similarly,one can steady show the following lemma.

Lemma 4.3Let 1≤p<∞,ρ be a continuous coherent risk measure on Lp(?,F(xiàn),P)and the set Δ be as in(3.3)and(3.4),then ρ≥V aRαon Lp(?,F(xiàn),P)if and only if for every B with>α and any ε>0,there is a measureμ∈Δ withμ(B)>1-ε.

Proof(1)Necessity:For any ε>0 and any B with P(B)>α,since

we have ρ(-1B)≥1.This implies that there exists a measureμ∈Δ withμ(B)>1-ε.

(2)Sufficiency:First,we consider the case where X∈Lp(?,F(xiàn),P)is bounded.

Given a bounded random variable X and any ε>0,let,whereThen>α.So there exists a measureμ∈Δ such thatμ(B)>1-ε. Hence,

Taking into account the fact that

we claim that

which yields(4.8)by letting ε→0.

which also yields(4.8)by letting ε→0.

Combining(4.7)and(4.8)gives rise to

Therefore

Next,let us consider the general case where X∈Lp(?,F(xiàn),P).Let:=X+∧n,andX andX‖p=0.It is easy to see thatandare comonotonic,as well as X+and X-.From Lemmas 4.1,4.2 and the comonotonic additivity of VaR it follows that

The proof of Lemma 4.3 is completed.

Next,we will use Proposition 3.1 and Lemma 4.3 to prove Theorem 3.2.

Proof of Theorem 3.2We only need to show that for given X∈H,there is a continuous coherent risk measure ρXsuch that ρX≥VaRαon H and with the property that ρX(X)≤VaRα(X).

Let

and define a risk measure ρX:H→R by

By Proposition 3.1 and Lemma 4.3,we know that ρXis a continuous coherent risk measure on H,and ρX≥VaRαon H with the property that ρX(X)≤(X)=VaRα(X).The proof of Theorem 3.2 is completed.

References

[1]Artzner P,Dellbaen F,Eber J M,Heath D.Thinking coherently[J].Risk,1997,10(4):68-71.

[2]Artzner P,Dellbaen F,Eber J M,Heath D.Coherent measures of risk[J].Math.Finan.,1999,9(3):203-228.

[3]Delbaen F.Coherent risk measures on general probability spaces[J].Adv.Finan.Stoch.,2002,35(2):1-37.

[4]Inoue A.On the worst conditional expectation[J].J.Math.Anal.Appl.,2003,286(1):237-247.

[5]Fischer T.Risk capital allocation by coherent risk measures based on one-sided moments[C].Insur. Math.Econ.,2003:135-146.

[6]Nakano Y.Efficient hedging with coherent risk measure[J].J.Math.Anal.Appl.,2004,293(1):345-354.

[7]Hamel A H,Heyde F.Duality for set-valued measures of risk[J].Siam J.Finan.Math.,2010,1(1):66-95.

[8]R¨uschendorf L.Mathematical risk analysis[J].Berlin:Spring,2013.

[9]Wei Linxiao,Hu Yijun.Coherent and convex risk measures for portfolios with applications[J].Stati. Prob.Lett.,2014,90(7):114-120.

[10]Li Yongming,Zhang Wenting,Cai Jipan.The asympotic properties of the sample quantile estimator of VaR under postitive associated samples[J].J.Math.,2015,35(2):13-20.

[11]Yan,Jiaan.An introduction to the financial mathematics[M].Beijing:Chinese Academic Press,2012.

在險(xiǎn)值與Lp-空間上的連續(xù)一致風(fēng)險(xiǎn)度量

陳燕紅,胡亦鈞
(武漢大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,湖北武漢430072)

本文研究了在險(xiǎn)值和Lp-空間上的連續(xù)一致風(fēng)險(xiǎn)度量之間的關(guān)系.利用凸集分離定理和截尾逼近方法,獲得了在險(xiǎn)值可以用Lp-空間上的連續(xù)一致風(fēng)險(xiǎn)度量表示的結(jié)果,并且得到了Lp-空間上的表示定理的一種新的證明方法.它們分別是文獻(xiàn)[2]的相關(guān)結(jié)論從L∞-空間到Lp-空間上的推廣和對(duì)Inoue[4]做的一些補(bǔ)充證明.

Lp-空間;連續(xù)一致風(fēng)險(xiǎn)度量;在險(xiǎn)值

MR(2010)主題分類號(hào):62P05;91B30O211.9

date:2015-03-30Accepted date:2015-05-06

Supported by National Natural Science Foundation of China(11371284).

Biography:Chen Yanhong(1988-),female,born at Shaoyang,Hunan,master,major in financial mathematics.

猜你喜歡
方法
中醫(yī)特有的急救方法
中老年保健(2021年9期)2021-08-24 03:52:04
高中數(shù)學(xué)教學(xué)改革的方法
化學(xué)反應(yīng)多變幻 “虛擬”方法幫大忙
變快的方法
兒童繪本(2020年5期)2020-04-07 17:46:30
學(xué)習(xí)方法
用對(duì)方法才能瘦
Coco薇(2016年2期)2016-03-22 02:42:52
最有效的簡(jiǎn)單方法
山東青年(2016年1期)2016-02-28 14:25:23
四大方法 教你不再“坐以待病”!
Coco薇(2015年1期)2015-08-13 02:47:34
賺錢方法
捕魚
主站蜘蛛池模板: 国产成人精品日本亚洲| 一本大道AV人久久综合| 色综合天天综合| 在线看国产精品| 国产福利免费视频| 成人亚洲国产| 欧美色图久久| 国产噜噜噜| 天天摸天天操免费播放小视频| 国产高潮视频在线观看| 最新国产网站| 高潮爽到爆的喷水女主播视频 | 国产一级裸网站| 黄片在线永久| 久久人人97超碰人人澡爱香蕉| 欧美色亚洲| 国产精品成人啪精品视频| 精品视频一区二区观看| 亚洲熟妇AV日韩熟妇在线| 国产永久免费视频m3u8| 亚洲av成人无码网站在线观看| 天堂成人在线| 亚洲av成人无码网站在线观看| 国内精品手机在线观看视频| 国产乱子伦精品视频| 91国内在线观看| 久久99国产视频| 亚洲精品自在线拍| 国产综合亚洲欧洲区精品无码| 另类综合视频| 欧美一区中文字幕| 欧美不卡视频一区发布| 国内精品小视频在线| 国产网站免费| 在线观看免费黄色网址| 亚洲成a人片77777在线播放| 女人av社区男人的天堂| 日韩色图区| 黄色国产在线| 97青青青国产在线播放| 美女内射视频WWW网站午夜 | 国产综合亚洲欧洲区精品无码| 极品私人尤物在线精品首页| 91口爆吞精国产对白第三集 | 全免费a级毛片免费看不卡| 欧美日本在线一区二区三区| 欧美色99| 国产门事件在线| 国产第一页第二页| 国产又黄又硬又粗| www.精品视频| 久久久久久久97| 91亚洲视频下载| 精品伊人久久久香线蕉| 全部无卡免费的毛片在线看| 性做久久久久久久免费看| 51国产偷自视频区视频手机观看 | 国产成人免费观看在线视频| 国产精品视屏| 狠狠色丁婷婷综合久久| 97在线观看视频免费| 人人91人人澡人人妻人人爽| 亚洲国产成人自拍| 国产精品大尺度尺度视频| 久久中文电影| 国产精品无码AV片在线观看播放| 亚洲精品色AV无码看| 亚洲国产av无码综合原创国产| 日本成人精品视频| 啪啪免费视频一区二区| 亚洲愉拍一区二区精品| 国产精品黑色丝袜的老师| 五月天婷婷网亚洲综合在线| av一区二区无码在线| 中文字幕永久在线看| 一级在线毛片| 亚洲色欲色欲www网| 久久免费视频播放| 国产欧美在线| 亚洲乱伦视频| 青草娱乐极品免费视频| 亚洲成A人V欧美综合天堂|