陳祥興,張崇玉,黃麗波,劉法孝,楊維仁*,姜淑貞*
(1.南京農業大學動物科技學院,南京 210095;2.山東農業大學動物科技學院,泰安 271000)
?
鐮刀菌毒素對斷奶仔豬腸道IL-1β和IL-6分布和表達的影響
陳祥興1,張崇玉2,黃麗波2,劉法孝2,楊維仁2*,姜淑貞2*
(1.南京農業大學動物科技學院,南京 210095;2.山東農業大學動物科技學院,泰安 271000)
旨在探討鐮刀菌毒素對斷奶仔豬腸道IL-1β和IL-6的分布和mRNA轉錄量的影響。選擇35日齡體重為8.45 kg±0.94 kg的健康三元雜交(杜×長×大)雌性仔豬40頭,隨機分為2個處理組,每組20頭。對照組飼喂基礎飼糧,鐮刀菌毒素組飼喂含有鐮刀菌毒素(玉米赤霉烯酮0.90 mg·kg-1,嘔吐毒素1.43 mg·kg-1,煙曲霉毒素5.85 mg·kg-1)的試驗飼糧,預試期7 d,正試期35 d,試驗結束每組隨機選取10頭仔豬進行屠宰取樣。結果表明:與對照組相比,鐮刀菌毒素組仔豬小腸IL-1β和IL-6的陽性細胞呈現由分散在固有層向絨毛內淋巴細胞集中的趨勢,而結腸的IL-1β和IL-6陽性細胞主要分布在固有層;十二指腸IL-1β、十二指腸和空腸的IL-6以及結腸IL-1β和IL-6的mRNA轉錄量顯著高于對照組(P<0.05),且小腸和結腸IL-1β和IL-6 mRNA轉錄量存在一定相關性(P<0.05)。在本試驗條件下,鐮刀菌毒素可通過改變腸道IL-1β和IL-6的分布和表達,影響腸道的免疫機能。
鐮刀菌毒素;腸道;IL-1β;IL-6;仔豬
鐮刀菌通常以寄生或者腐生的方式侵入到植物體,在繁殖的過程中產生鐮刀菌毒素,對糧食以及飼料有極大的危害。與動物生產以及健康密切相關的鐮刀菌毒素包括單端孢霉烯族化合物(trichothecenes)、玉米赤霉烯酮(ZEN)和煙曲霉毒素(FUM)。在全球范圍內,谷粒和動物飼料通常會受到單端孢霉烯族化合物、ZEN和FUM的聯合污染[1]。細胞因子是由免疫細胞和某些非免疫細胞分泌的一類活性物質,是免疫系統重要的信息分子,在免疫調節中充當十分重要的角色。作為細胞因子重要的組成部分,白介素(interleukin,IL)一直是研究的熱點,其在細胞間相互作用、免疫調節以及炎癥過程中均起到重要調節作用[2]。前人研究證實鐮刀菌毒素能夠在翻譯和轉錄水平上影響相關細胞因子的穩定性[3],體外試驗中發現鐮刀菌毒素能夠影響仔豬空腸上皮細胞的細胞因子mRNA的表達[4]。但是尚未見鐮刀菌毒素對斷奶仔豬腸道細胞因子IL-1β和IL-6分布和mRNA表達量的研究報道。本試驗旨在從分子水平探討鐮刀菌毒素對斷奶仔豬腸道IL-1β和IL-6的影響,為闡述鐮刀菌毒素對仔豬腸道免疫的危害和指導養豬生產提供理論依據。
1.1試驗動物
35日齡三元雜交(杜×長×大)雌性斷奶仔豬40頭,平均體重為8.45 kg±0.94 kg。
1.2試驗設計
40頭仔豬隨機分為對照組和鐮刀菌毒素組,每組20頭,各組間仔豬初始體重差異不顯著(P>0.05)。對照組飼喂基礎飼糧,鐮刀菌毒素組飼喂用自然霉變玉米和霉變玉米蛋白粉替代正常玉米和玉米蛋白粉配制的試驗飼糧,預試期7 d,試驗期35 d。
1.2.1飼養管理仔豬采用塑料漏縫地板的單體籠(0.48 m2)飼養?;\內安裝乳頭飲水器和料槽以便仔豬自由采食和飲水。試驗開始前對豬舍進行全面清掃和消毒,試驗期間每周進行一次消毒,舍內安裝紅外保溫燈,第一周豬舍內溫度維持在30 ℃左右,之后將溫度調整在26~28 ℃,相對濕度保持在65%左右。試驗在山東農業大學動物科技學院試驗站進行。
1.2.2試驗飼糧參考NRC(2012)仔豬飼養標準推薦量配制飼糧。本課題組于2013年6月至12月相繼從山東省16個飼料廠和21個養殖場抽檢飼料原料樣品共計153個,檢測其霉菌毒素含量,調查霉菌毒素污染狀況。從中選擇毒素水平低于檢測限的原料配制對照飼糧,選擇自然霉變玉米和霉變玉米蛋白粉配制鐮刀菌毒素飼糧。檢測發霉玉米和玉米蛋白粉中玉米赤霉烯酮(ZEN)、黃曲霉毒素(AFL)、T-2毒素、嘔吐毒素(DON)和煙曲霉毒素(FUM)含量,根據毒素水平分別用50%自然發霉玉米和玉米蛋白粉代替基礎飼糧中的玉米和玉米蛋白粉配制鐮刀菌毒素飼糧。飼糧組成及營養水平見表1。
試驗所需飼糧于正式試驗開始前一周一次性配制完成,在試驗開始和結束后分別取樣,用以分析飼糧中的毒素和粗蛋白質水平[5]。ZEN、AFL、T-2毒素和FUM的測定采用酶聯免疫吸附(ELISA)和熒光測定法,DON的測定采用高效液相色譜法(HPLC)。ZEN、DON、AFL、FUM和T-2毒素的最低檢測限分別0.1 mg·kg-1、0.1 mg·kg-1、1.0 μg·kg-1、0.25 mg·kg-1和1.0 μg·kg-1。飼糧毒素水平見表1,AFL和T-2毒素低于檢測限水平。
1.3測定指標及方法
1.3.1樣本采集試驗第35天每組隨機選擇10頭仔豬電擊致死后放血,剖開腹腔,在十二指腸、空腸、回腸和結腸的中段各取10 cm左右的樣品,并用低溫生理鹽水輕輕沖洗腸內容物,用濾紙吸干水分后將樣品均勻裁切成兩段,一段置于Bouin’s液中固定,待做免疫組化切片,另一段放入5 mL無菌凍存管中,立即放入液氮中速凍,后轉入-80 ℃低溫冰箱待檢測相關指標。
1.3.2免疫組化(SABC法)取Bouin’s液中固定好的組織塊,用乙醇逐級脫水,二甲苯透明,采用BMJ23型包埋機包埋。具體步驟:①切片機(LEICA RM2135,德國)進行切片(5 μm),常規脫蠟至水。②檸檬酸緩沖液(0.01 mol·L-1,pH 6.0)進行抗原熱修復,PBS(0.01 mol·L-1,pH 7.2)洗3次,5 min·次-1(下同)。③3%H2O2室溫避光孵育30 min,用以阻斷內源性過氧化物酶,PBS洗3次。④10%胎牛血清37 ℃封閉孵育1 h。⑤分別加一抗兔抗IL-6(1∶150)多克隆抗體(bs-4587R,北京博奧森生物技術有限公司)和兔抗IL-1β(1∶150)多克隆抗體(bs-0812R,北京博奧森生物技術有限公司),4 ℃孵育過夜,PBS洗3次。⑥加生物素化羊抗兔IgG(1∶150)二抗(SPN-9001,北京中杉金橋生物技術有限公司),37 ℃恒溫箱中孵育1 h,PBS洗3次。⑦加辣根過氧化物酶-鏈霉素親和素(1∶150),37 ℃孵育45 min,PBS洗3次。⑧DAB(ZLI-9018,北京中杉金橋生物技術有限公司,濃縮液∶緩沖液=1∶20)顯色,顯微鏡下觀察顯色程度,控制顯色時間。⑨蘇木素復染、脫水、透明、封片,在顯微鏡下觀察陽性細胞分布規律(陽性產物呈棕黃色)。
表1飼糧組成及營養水平(風干基礎)
Table 1Composition and nutrient levels of diets (air-dry basis)

%
1)每千克日糧提供:VA 3300 IU;VD3330 IU;VE 24 IU;VK30.75 mg;VB11.50 mg;VB25.25 mg;VB62.25 mg;VB120.026 mg;泛酸 15.00 mg;尼克酸 22.5 mg;生物素 0.075 mg;葉酸 0.45 mg;錳 6.00 mg;鐵 150 mg;鋅 150 mg;銅 9.00 mg;碘 0.21 mg;硒 0.45 mg。2)粗蛋白質為實測值,其他營養水平為設計值。3)毒素水平為實測值
1)Supplied per kg of diet:Vitamin A 3300 IU;Vitamin D3330 IU;Vitamin E 24 IU;Vitamin K30.75 mg;Vitamin B11.50 mg;Vitamin B25.25 mg;Vitamin B62.25 mg;Vitamin B120.026 mg;Pantothenic acid 15.00 mg;Niacin 22.5 mg;Biotin 0.075 mg;Folic acid 0.45 mg;Mn 6.00 mg;Fe 150 mg;Zn 150 mg;Cu 9.00 mg;I 0.21 mg;Se 0.45 mg.2)Protein was analyzed value,and the other nutrient levels were calculated value.3)Zearalenone (ZEN),deoxynivalenol (DON) and fumonisins (FUM) were analyzed value
1.3.3腸道IL-6和IL-1β mRNA相對轉錄量根據GenBank已報道的豬的IL-1β、IL-6和GAPDH基因序列,用Primer 6.0設計相應特異性引物,引物由上海生物工程公司合成(表2)。
取出-80 ℃保存的十二指腸、空腸、回腸和結腸樣品50~100 mg,按照Trizol試劑盒說明書(In-vitrogen公司,美國)提取總RNA,用紫外分光光度計檢測RNA的質量和濃度,結果顯示OD值均在1.8~2.0。檢測后的總RNA立即進行反轉錄。反轉錄按照PrimeScript?RT Master Mix Perfect Real Time 試劑盒說明書進行操作(TaKaRa Coad:DDR036A,Lot:BK1302,反應體積為20 μL)。按照TaKaRa公司的熒光定量試劑盒說明書加入相應的反應試劑(TaKaRa公司,大連),反應體積為20 μL,組成為10 μL SYBR Primerx ExTaq,0.4 μL上游引物(10 μmol·L-1),0.4 μL下游引物(10 μmol·L-1),0.4 μL ROX Reference Dye,2 μL cDNA以及6.8 μL的dH2O。其擴增條件均為95 ℃預變性30 s,95 ℃變性5 s,60 ℃退火延伸34 s,95 ℃ 15 s,60 ℃ 60 s,40個循環,60 ℃檢測熒光信號。每個樣品做3個重復。每個樣品靶基因的相對mRNA表達水平用以下公式計算:相對mRNA表達=2-△△Ct[6]。
表2PCR反應的引物序列
Table 2Sequence of primers for real-time PCR

目的基因Targetgene引物序列(5'-3')Sequence產物大小/bpProductSize登錄號AccessionNo.IL-1βF:CCTCTCCAGCCAGTCTTCATR:GCCATCAGCCTCAAATAACAG126NM_214055.1IL-6F:TGGCTACTGCCTTCCCTACCR:CACACATCTCCTTTCTCATTGC153NM_214399.1GAPDHF:ATGGTGAAGGTCGGAGTGAAR:CGTGGGTGGAATCATACTGG154NM_001206359.1
1.4統計與分析
數據采用SAS 9.2統計軟件進行均值的雙樣本成對T檢驗分析(Two Sample Pairedt-test for the Means),通過SAS 9.2統計軟件的CORR過程對小腸和結腸IL-1β和IL-6進行Pearson相關性分析。P<0.05為差異顯著。
2.1小腸IL-1β和IL-6的分布
鐮刀菌毒素對斷奶仔豬小腸IL-1β分布的影響見圖1。受鐮刀菌毒素影響,小腸三段的絨毛形態由細長變得粗短,IL-1β的陽性反應物質在近腸腔面小腸絨毛上皮細胞著色強,而在小腸絨毛兩側的細胞免疫陽性反應弱;在腸腺周圍的固有層細胞免疫陽性反應物質著色也較強。處理組的免疫陽性反應強于對照組,且處理組小腸絨毛兩側的細胞也呈強陽性反應。鐮刀菌毒素對斷奶仔豬小腸IL-6分布的影響見圖2。受鐮刀菌毒素影響,三段小腸(十二指腸、空腸和回腸)的絨毛形態由細長變得粗短,IL-6的分布同IL-1β相近,對照組較鐮刀菌毒素組免疫陽性反應明顯弱。
2.2小腸IL-6和IL-1β mRNA的轉錄量
與對照組相比,鐮刀菌毒素顯著提高了(P<0.05)十二指腸IL-1β的mRNA轉錄量(圖3),回腸IL-1β的mRNA轉錄量有升高的趨勢(P=0.087)。鐮刀菌毒素顯著提高了(P<0.05)十二指腸和空腸IL-6的mRNA轉錄量(圖4)。
2.3結腸IL-1β和IL-6的分布和mRNA的轉錄量
鐮刀菌毒素對斷奶仔豬結腸IL-1β和IL-6的分布見圖5。IL-1β陽性細胞分散在結腸黏膜固有層的大腸腺的柱狀上皮細胞胞質內,鐮刀菌毒素組IL-1β的陽性表達較對照組強。IL-6的分布同IL-1β相近,對照組較鐮刀菌毒素組免疫陽性反應明顯弱。
2.4結腸IL-6和IL-1β的分布和mRNA的轉錄量
與對照組相比,鐮刀菌毒素組結腸IL-1β和IL-6的mRNA轉錄量顯著升高(P<0.05,圖6)。
2.5小腸和結腸IL-1β和IL-6的mRNA轉錄量的相關性
小腸和結腸炎性因子的相關性見表3。結腸IL-1β的mRNA轉錄量與十二指腸和回腸IL-1β的mRNA轉錄量存在顯著正相關(P<0.05);結腸IL-6的mRNA轉錄量與十二指腸和空腸IL-6的mRNA轉錄量存在顯著正相關(P<0.05)。
本試驗采用已知鐮刀菌毒素含量的自然霉變玉米和霉變玉米蛋白粉配制試驗飼糧,以便為動物生產提供科學依據,與此同時我們選擇了優質原料配制對照飼糧,但是遺憾的是對照飼糧中也檢測到不同程度的毒素含量,這進一步說明我國鐮刀菌毒素污染的普遍性及本研究的迫切性。本試驗對照組飼糧中ZEN和DON的水平遠低于我國飼料衛生標準規定的小于0.5[7]、1 mg·kg-1[8],也低于歐盟關于仔豬飼糧中ZEN、DON和FUM小于0.1、0.9和5 mg·kg-1的最高限量規定[9],因此我們認為對照組中毒素含量不影響對鐮刀菌毒素組結果的判斷。

A、B.對照組十二指腸;C、D.鐮刀菌毒素組十二指腸;E、F.對照組空腸;H、I.鐮刀菌毒素組空腸;J、K:對照組回腸;L、M:鐮刀菌毒素組回腸。LE.小腸絨毛上皮,G.腸腺,S.固有層;紅色箭頭示IL-1β免疫陽性細胞,藍色箭頭為陰性A and B were duodenum of the Control.C and D were duodenum of the Fusarium toxins.E and F were jejunum of the Control.H and I were jejunum of the Fusarium toxins.J and K were ileum of the Control.L and M were ileum of the Fusarium toxins.LE was epithelium of intestine,G was intestinal gland and S was lamina propria.Red arrows showed immunoreactive cells of IL-1β and blue arrows showed immune-negative cells of IL-1β圖1 鐮刀菌毒素對小腸IL-1β的影響(A、E、J、C、H、L.100×;B、F、K、D,I、M.400×)Fig.1 Effects of Fusarium toxins on IL-1β in small intestine(A,E,J,C,H,L.100×;B,F,K,D,I,M.400×)

A、B.對照組十二指腸;C、D.鐮刀菌毒素組十二指腸;E、F:對照組空腸;H、I:鐮刀菌毒素組空腸;J、K.對照組回腸;L、M.鐮刀菌毒素組回腸。LE.小腸絨毛上皮,G.腸腺,S.固有層。紅色箭頭示IL-6免疫陽性細胞,藍色箭頭為陰性A and B were duodenum of the Control.C and D were duodenum of the Fusarium toxins.E and F were jejunum of the Control.H and I were jejunum of the Fusarium toxins.J and K were ileum of the Control.L and M were ileum of the Fusarium toxins.LE was epithelium of intestine,G was intestinal gland and S was lamina propria.Red arrows showed immunoreactive cells of IL-6 and blue arrows showed immune-negative cells of IL-6圖2 鐮刀菌毒素對小腸IL-6的影響(A、E、J、C、H、L.100×;B、F、K、D、I、M.400×)Fig.2 Effects of Fusarium toxins on IL-6 in small intestine(A,E,J,C,H,L.100×;B,F,K,D,I,M.400×)

圖3 鐮刀菌毒素對小腸IL-1β的mRNA轉錄量的影響Fig.3 Effects of Fusarium toxins on IL-1β mRNA levels in the small intestine

圖4 鐮刀菌毒素對小腸IL-6的mRNA轉錄量的影響Fig.4 Effects of Fusarium toxins on IL-6 mRNA levels in the small intestine

A、B:對照組IL-1β,C、D:鐮刀菌毒素組IL-1β;E、F:對照組IL-6,G、H:鐮刀菌毒素組IL-6。AT為脂肪組織,S為固有層。紅色箭頭示IL-1β免疫陽性細胞,藍色箭頭為陰性A and B were IL-1β of the Control.C and D were IL-1β of the Fusarium toxins.E and F were IL-6 of the Control.G and H were IL-6 of the Fusarium toxins.AT was adipose tissue and S was lamina propria.Red arrows showed immunoreactive cells and blue arrows showed immune-negative cells圖5 鐮刀菌毒素對結腸IL-1β和IL-6的影響(A、C、E、G.100×;B、D、F、H.400×)Fig.5 Effects of Fusarium toxins on IL-1β in the colon(A,C,E,G.100×;B,D,F,H.400×)
白介素在激活與調節免疫細胞中有重要作用。白介素IL-1β是在先天免疫過程中宿主炎癥反應的主要介質,是一種對炎癥反應和免疫功能有著顯著調節作用的多功能細胞因子。IL-6是由多種細胞包括免疫細胞(例如單核細胞、巨噬細胞、淋巴細胞等)和非免疫細胞(例如成骨細胞、骨髓基質細胞、角化細胞、腸道上皮細胞等)產生的多效促炎性細胞因子[10],同樣是炎癥反應的重要介質。前人研究多種霉菌毒素單獨和聯合的免疫毒性發現,毒素能夠提高小鼠、仔豬以及肉雞脾的IL-1β和IL-6的mRNA轉錄量[11-13]。目前,鐮刀菌毒素對免疫功能的研究多集中在對脾的研究上,且多為單一毒素作用,對腸道的免疫功能的影響研究較少。本試驗小腸的IL-1β和IL-6陽性細胞分布集中在黏膜固有層和絨毛內淋巴細胞上,并有向絨毛段集中的趨勢,這樣的結果與腸道應急綜合征的IL-1β和IL-6分布大體一致[2],說明毒素已經造成了腸道的損傷。本試驗觀察,鐮刀菌毒素組仔豬小腸絨毛與對照組相比變粗變短,這與用儲存4年的玉米飼喂肉雞導致空腸絨毛高度降低的結果[14]相似。有報道指出IL-1β和IL-6的mRNA轉錄量的升高程度與腸道癥狀嚴重程度具有一定的相關性[15-16]。以大鼠為研究對象,對其結腸進行電灼傷,出現潰瘍,測定小腸和結腸的IL-1β和IL-6的mRNA轉錄量,結果表明這兩種細胞因子的轉錄量均大幅提高[17]。也有試驗結果表明,機體在受到鐮刀菌毒素影響后,IL-6和IL-1β的mRNA轉錄量通常會增加,這可能會激活小腸上皮細胞的炎性免疫應答[18]。本試驗證實,鐮刀菌毒素顯著提高了十二指腸IL-1β和IL-6的mRNA轉錄量、空腸的IL-1β mRNA轉錄量以及結腸的IL-1β和IL-6的mRNA轉錄量,說明鐮刀菌毒素可以刺激腸道免疫細胞和上皮細胞產生過量的IL-1β和IL-6,促進炎癥反應的發生。

圖6 鐮刀菌毒素對結腸IL-1β和IL-6的mRNA轉錄量的影響Fig.6 Effects of Fusarium toxins on mRNA levels of IL-1β and IL-6 in the colon
表3小腸和結腸IL-1β和IL-6 mRNA轉錄量的相關性
Table 3Correlation analysis on mRNA levels of cytokine in between intestine and colon

細胞因子Cytokine小腸腸段Intestinalsegment結腸Colon相關系數CorrelationcoefficientP值P-value十二指腸Duodenum0.9090.012IL-1β空腸Jejunum0.7520.084回腸Ileum0.8930.017十二指腸Duodenum0.984<0.001IL-6空腸Jejunum0.967<0.001回腸Ileum0.6560.157
前人通過研究人和相關實驗動物認為,結腸促炎性細胞因子的產生和增加與小腸相關癥狀是有聯系的[19-21],同時以化學性結腸炎動物模型作為研究對象,發現結腸出現炎癥會引起全身性炎癥的產生,可能影響到小腸功能[17]。本試驗系統性地研究了鐮刀菌毒素對小腸和結腸的IL-1β和IL-6分布及其mRNA的轉錄量的影響,并進行了相關性分析,發現鐮刀菌毒素對小腸和結腸細胞因子的影響存在一定的相關性,與前人的研究一致。這說明小腸產生炎性反應后會促進結腸促炎性因子的產生,同時結腸出現炎癥可能會導致近端的非發炎區域腸神經元結構和功能的顯著異常[22],進一步改變了小腸的蠕動,引起分泌功能障礙,最終可能影響腸道的吸收,其具體的反應機制尚需進一步探討。
本試驗條件下,鐮刀菌毒素顯著影響斷奶仔豬小腸和結腸的IL-1β和IL-6陽性分布和mRNA轉錄量,說明鐮刀菌毒素飼糧(0.90 mg·kg-1ZEN,1.43 mg·kg-1DON,5.85 mg·kg-1FUM)通過改變腸道IL-1β和IL-6的分布和表達,影響仔豬腸道的免疫機能。
[1]PLACINTA C M,D'MELLO J,MACDONALD A.A review of worldwide contamination of cereal grains and animal feed withFusariummycotoxins[J].AnimFeedSciTech,1999,78(1):21-37.
[2]李亞其.IL-1β,IL-6,IL-10在腸易激綜合征患者中的表達及臨床意義[D].長沙:中南大學,2012.
LI Y Q.The expression of cytokines IL-lβ,IL-6,IL-10 in patients with irritable bowel syndrome[D].Changsha:Central South University,2012.(in Chinese)
[3]CHUNG Y,JARVIS B,PESTKA J.Modulation of lipopolysaccharide-induced proinflammatory cytokine production by satratoxins and other macrocyclic trichothecenes in the murine macrophage[J].JToxicolEnvironHealthA,2003,66(4):379-391.
[4]WAN L Y M,TURNER P C,EL-NEZAMI H.Individual and combined cytotoxic effects ofFusariumtoxins (deoxynivalenol,nivalenol,zearalenone and fumonisins B1) on swine jejunal epithelial cells[J].FoodChemToxicol,2013,57:276-283.
[5]張麗英.飼料分析及飼料質量檢測技術[M].北京:中國農業大學出版社,2003.
ZHANG L Y.Feed analysis and feed quality detection technology[M].Beijing:China Agricultural University Press,2003.(in Chinese)
[6]LIVAK K J,SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod[J].Methods,2001,25(4):402-408.
[7]中華人民共和國國家質量監督檢驗檢疫總局.GB13078.2-2006[S].中華人民共和國國家標準-飼料衛生標準.北京:中國標準出版社,2006:7-1.
General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China(AQSIQ).GB13078.2-2006[S].National standard of the people’s Republic of China-Hygienical standard for feeds.Beijing:Standards Press of China,2006:7-1.(in Chinese)
[8]中華人民共和國國家質量監督檢驗檢疫總局.GB13078.3-2007[S].中華人民共和國國家標準-飼料衛生標準.北京:中國標準出版社,2007:3-1.
General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China(AQSIQ).GB13078.2-2007[S].National standard of the people's Republic of China-Hygienical standard for feeds.Beijing:Standards Press of China,2007:3-1.(in Chinese)
[9]European Commission.Commission recommendation of 17 August 2006 on the presence of deoxynivalenol,zearalenone,ochratoxin A,T-2 and HT-2 and fumonisins in products intended for animal feeding[J].OffiJEurUnn,2006,229:7-9.
[10]PAPANICOLAOU D A,WILDER R L,MANOLAGAS S C,et al.The pathophysiologic roles of interleukin-6 in human disease[J].AnnInternMed,1998,128(2):127-137.
[11]雷明彥.飼料中常見霉菌毒素對小鼠的聯合毒性作用及機制的研究[D].武漢:華中農業大學,2013.
LEI M Y.Combined effects of predominant mycotoxins in feeds on mice[D].Wuhan:Huazhong Agricultural University,2013.(in Chinese)
[12]GRENIER B,LOUREIRO-BRACARENSE A P,LUCIOLI J,et al.Individual and combined effects of subclinical doses of deoxynivalenol and fumonisins in piglets[J].MolNutrFoodRes,2011,55(5):761-771.
[13]LI Z,YANG Z B,YANG W R,et al.Effects of feed-borneFusariummycotoxins with or without yeast cell wall adsorbent on organ weight,serum biochemistry,and immunological parameters of broiler chickens[J].PoultSci,2012,91(10):2487-2495.
[14]崔小燕.初探不同儲存期玉米對雉科鳥類抗氧化及免疫功能的影響[D].哈爾濱:東北林業大學,2013.
CUI X Y.Effects of maize at different storage periods on antioxidant abilities and immune function of birds[D].Harbin:Northeast Forestry University,2013.(in Chinese)
[15]LIEBREGTS T,ADAM B,BREDACK C,et al.Immune activation in patients with irritable bowel syndrome[J].Gastroenterology,2007,132(3):913-920.
[16]OHMAN L,ISAKSSON S,LINDMARK A,et al.T-cell activation in patients with irritable bowel syndrome[J].AmJGastroenterol,2009,104(5):1205-1212.
[17]BARADA K,MOURAD F H,NOURSI B,et al.Electrocautery-induced localized colonic injury elicits increased levels of pro-inflammatory cytokines in small bowel and decreases jejunal alanine absorption[J].Cytokine,2015,71(1):109-118.
[18]ARSENEAU K O,TAMAGAWA H,Pizarro T T,et al.Innate and adaptive immune responses related to IBD pathogenesis[J].CurrGastroenterolRep,2007,9(6):508-512.
[19]BARADA K A,MOURAD F H,SAWAH S I,et al.Localized colonic inflammation increases cytokine levels in distant small intestinal segments in the rat[J].LifeSci,2006,79(21):2032-2042.
[20]BARADA K A,MOURAD F H,SAWAH S I,et al.Up-regulation of nerve growth factor and interleukin-10 in inflamed and non-inflamed intestinal segments in rats with experimental colitis[J].Cytokine,2007,37(3):236-245.
[21]YAMAMOTO T,MARUYAMA Y,UMEGAE S,et al.Mucosal inflammation in the terminal ileum of ulcerative colitis patients:endoscopic findings and cytokine profiles[J].DigestLiverDis,2008,40(4):253-259.
[22]BLANDIZZI C,FORNAI M,COLUCCI R,et al.Altered prejunctional modulation of intestinal cholinergic and noradrenergic pathways by α2-adrenoceptors in the presence of experimental colitis[J].BritJPharmacol,2003,139(2):309-320.
(編輯白永平)
Effects ofFusariumToxins on IL-1β and IL-6 in Post-weaning Piglets
CHEN Xiang-xing1,ZHANG Chong-yu2,HUANG Li-bo2,LIU Fa-xiao2,YANG Wei-ren2*,JIANG Shu-zhen2*
(1.CollegeofAnimalScienceandTechnology,NanjingAgriculturalUniversity,Nanjing210095,China;2.CollegeofAnimalScienceandVeterinaryMedicine,ShandongAgriculturalUniversity,Tai’an271000,China)
The aim of the present study was to investigate effects ofFusariumtoxins on distribution and mRNA expression levels of intestinal IL-1β and IL-6 in post-weaning piglets.A total of 40 healthy piglets (Duroc×Landrace×Large White) aged at 35 d with an average body weight (8.45±0.94) kg were randomly allocated into two treatments with 20 in the control group (Control) and 20 in the test group (FusariumToxins).Piglets in the control group were fed a basal diet only,and piglets in theFusariumtoxins group were fed a test diet (0.90 mg·kg-1ZEN,1.43 mg·kg-1DON,5.85 mg·kg-1FUM).The experimental period was 35 d after 7 d adaptation.Then 10 piglets of each treatment were chosen to slaughter and sample.Results showed because of theFusariumtoxins,the positive cells of the small intestinal IL-1β and IL-6 were from dispersed in the lamina propria to villous lymphocytes concentration.But the IL-1β and IL-6 positive cells of the colon were mainly distributed in the lamina propria cells.And theIL-1β mRNA levels of duodenum,theIL-6 mRNA levels of duodenum and jejunum and theIL-1β andIL-6 mRNA levels of colon of theFusariumtoxins group were significantly higher (P<0.05) than that of the control.The mRNA levels of IL-1β and IL-6 had a correlation between small intestine and colon.In the present study,it suggested thatFusariumtoxins exerted a deleterious effect on inflammatory response via distribution and mRNA expression levels of intestinal IL-1β and IL-6,which have a negative impact on immunity of piglets eventually.
Fusariumtoxins;intestine;IL-1β;IL-6;piglets
10.11843/j.issn.0366-6964.2016.10.022
2016-05-11
山東省現代農業產業技術體系生豬創新團隊建設項目(SDAIT-08-05)
陳祥興(1988-),男,山東淄博人,博士生,主要從事動物營養與飼料科學研究,Tel:0538-8241257,E-mail: cxxabcd@163.com
姜淑貞,副教授,碩士生導師,E-mail: shuzhen305@163.com;楊維仁,教授,博士生導師,E-mail: wryang@sdau.edu.cn
S859.87
A
0366-6964(2016)10-2126-10