白衛(wèi)濱,朱翠娟,胡云峰,焦 睿,吳 實(shí),孫建霞
(1.暨南大學(xué) 食品科學(xué)與工程系,廣東 廣州510632;2.廣東工業(yè)大學(xué) 輕工化工學(xué)院,廣東 廣州510090)
花色苷對(duì)慢性疾病營(yíng)養(yǎng)干預(yù)分子機(jī)制的研究進(jìn)展
白衛(wèi)濱1,朱翠娟1,胡云峰1,焦 睿1,吳 實(shí)1,孫建霞*2
(1.暨南大學(xué) 食品科學(xué)與工程系,廣東 廣州510632;2.廣東工業(yè)大學(xué) 輕工化工學(xué)院,廣東 廣州510090)
花色苷是一種天然食用功能色素。本文從花色苷的結(jié)構(gòu)特點(diǎn)、生理活性及作用機(jī)理等方面,綜述了花色苷對(duì)慢性疾病的作用途徑及分子機(jī)制,并對(duì)花色苷對(duì)心血管疾病、腫瘤、糖尿病等慢性疾病具有的營(yíng)養(yǎng)干預(yù)作用進(jìn)行了討論,為花色苷預(yù)防疾病和營(yíng)養(yǎng)干預(yù)機(jī)制的深入研究提供參考。
花色苷;心血管疾病;腫瘤;糖尿病;營(yíng)養(yǎng)干預(yù)
花色苷(anthocyanidin)是一類廣泛存在于植物中的水溶性色素,屬于類黃酮化合物,也是植物的主要呈色物質(zhì)[1-4]。它在不同環(huán)境中可以顯示出不同的色澤和讓人賞心悅目的顏色,例如在許多水果、蔬菜中呈現(xiàn)紅色、紫色、藍(lán)色等。花色苷作為一種天然色素,在食品加工行業(yè)已得到廣泛應(yīng)用。大量研究證實(shí),花色苷具有多種生理保健和疾病預(yù)防的功效,目前已成為營(yíng)養(yǎng)學(xué)、醫(yī)藥學(xué)、植物學(xué)等領(lǐng)域的研究熱點(diǎn)[5]。
花青素具有類黃酮的典型結(jié)構(gòu),是2-苯基苯并吡喃陽(yáng)離子的衍生物,以C6-C3-C6為基本骨架。花色苷是花青素的糖苷衍生物。由于花青素的游離狀態(tài)很不穩(wěn)定,所以自然界中一般以花色苷的形式存在,基本結(jié)構(gòu)如圖1所示。

圖1 花色苷的分子結(jié)構(gòu)式Fig.1 Molecular structure of anthocyanins
R1和R2是H、OH或者OCH3,R3是糖基或H,R4是糖基或OH,A、B環(huán)上羥基數(shù)目、位置以及C環(huán)雙鍵對(duì)其抗氧化性有很大影響[5]。
盡管已經(jīng)從植物中分離出數(shù)百種花色苷,但已知花青素有20種,在植物中常見的有6種,即天竺葵素(Pelargonidin,Pg),矢車菊素(Cyanidin,Cy),飛燕草素(Delphinidin,Dp),芍藥色素(Peonidin,Pn),矮牽牛花素 (petunidin,Pt)和錦葵色素(malvidin,Mv)[1],其中最常見的糖苷形式為花青素-3-葡萄糖苷。見表1。

表1 6類常見花青素的結(jié)構(gòu)特點(diǎn)Table 1 Structural features of six common anthocyanins
近年來(lái),隨著人們對(duì)食品添加劑安全性問(wèn)題的關(guān)注,花色苷作為一種食品中的成分,既具有食品著色劑功能,同時(shí)又具有抗氧化功能,在治療由毛細(xì)血管脆弱所引發(fā)的血液循環(huán)疾病、阻止血小板凝聚、控制糖尿病、抗腫瘤、改善生殖系統(tǒng)的損傷、抑制低密度脂蛋白氧化,以及改善動(dòng)脈粥樣硬化、改善視疲勞、保護(hù)肝臟等方面有重要的生理功能,受到了越來(lái)越多消費(fèi)者的關(guān)注和研究人員的重視[6]。
2.1 花色苷對(duì)心血管疾病的作用機(jī)制
心血管疾病是危害中老年人群健康的疾病之一[7],包括高血壓、高血脂、動(dòng)脈粥樣硬化、血液粘稠等癥狀,其死亡率居于各種死因之首。流行病學(xué)研究發(fā)現(xiàn),長(zhǎng)期攝入富含黃酮類物質(zhì)的植物性食物,可降低心血管類慢性疾病的發(fā)病率[8]。Mink等[9]對(duì)34 489名健康絕經(jīng)女性進(jìn)行了16年的調(diào)查,發(fā)現(xiàn)經(jīng)常食用富含花色苷食物的女性,冠心病的發(fā)病率和死亡率明顯降低。Cassidy等[10]也做了一項(xiàng)長(zhǎng)達(dá)18年的前瞻性研究,通過(guò)對(duì)93 600多名中年健康婦女隨訪,發(fā)現(xiàn)長(zhǎng)期攝入富含花色苷食物,可顯著降低心肌梗死的發(fā)病率。大量的體內(nèi)外實(shí)驗(yàn)研究發(fā)現(xiàn),花色苷可以防治心血管疾病,其機(jī)制可能與抗炎、抗氧化、調(diào)節(jié)血脂代謝等有關(guān)。花色苷對(duì)心血管疾病的干預(yù)主要通過(guò)NF-κB、PPAR-γ-ABCA1、Keap1-Nrf2等信號(hào)途徑發(fā)揮作用。
2.1.1 NF-κB途徑 花色苷通過(guò)作用于 NF-κB(nuclear factor kappa B)信號(hào)途徑,發(fā)揮抗炎作用。NF-κB因子在調(diào)節(jié)免疫、炎癥、凋亡過(guò)程相關(guān)基因的表達(dá)中發(fā)揮重要作用。NF-κB的激活因素有很多種,包括腫瘤壞死因子-α (tumor necrosis factor alpha,TNF-α),白介素-Iβ (interleukin-1 beta,IL-1β),以及LPS、自由基、紫外線等多種前炎癥細(xì)胞因子和應(yīng)激性刺激[11]。在未受到刺激的細(xì)胞中,NF-κB與抑制蛋白質(zhì)I-κB結(jié)合在一起以二聚體或異二聚體的形式存在于細(xì)胞質(zhì)中。當(dāng)細(xì)胞受到刺激后,其抑制蛋白質(zhì)I-κB發(fā)生磷酸化并降解,NF-κB立即轉(zhuǎn)移到細(xì)胞核中并誘導(dǎo)炎癥相關(guān)基因轉(zhuǎn)錄[12](圖2)。Poulose[13]及其團(tuán)隊(duì)用富含矢車菊素-3-葡萄糖苷的花色苷提取物,干預(yù)作用于LPS刺激的BV2細(xì)胞,結(jié)果表明,花色苷提取物的存在使得I-κB和胞漿中p65的量上調(diào),細(xì)胞核中由于LPS刺激而產(chǎn)生的異位p65的量下調(diào)。研究還表明,NF-κB途徑的抑制同時(shí)還伴隨著iNOS和COX-2的下調(diào)。

圖2 NF-κB信號(hào)通路Fig.2 Pathway of NF-κB
Hou等[14]發(fā)現(xiàn),飛燕草素、矢車菊素、芍藥色素、錦葵色素、天竺葵色素等5種含量較豐富的花青素作用于巨噬細(xì)胞,只有飛燕草素和某些矢車菊素可以抑制COX2表達(dá),這種作用主要是通過(guò)花青素誘導(dǎo)iκB-α的合成,同時(shí)抑制NF-κB的異位,從而阻斷NF-κB信號(hào)通路的激活,且這兩種花青素的抗炎效應(yīng)與其具有的二羥苯基明顯相關(guān)。其他的類黃酮物質(zhì)如槲皮素,可以抑制巨噬細(xì)胞中IL-6、TNF-α的合成與釋放,進(jìn)而抑制NF-κB信號(hào)途徑的轉(zhuǎn)導(dǎo)。在內(nèi)皮細(xì)胞中花青素可以減弱由氧化低密度脂蛋白(oxLDL)造成的氧化應(yīng)激。因?yàn)閜38MAPK蛋白質(zhì)的磷酸化作用取決于磷酸化p38MAPK和非磷酸化p38MAPK的表達(dá)比率,NF-κB(p65)的核易位取決于NF-κB(p65)在核內(nèi)和胞漿內(nèi)的表達(dá)比率,而矢車菊素和飛燕草素都以相似的方法抑制p38MAPK的磷酸化和NF-κB的易位,且矢車菊素和飛燕草素的這種作用與其結(jié)構(gòu)中存在B環(huán)的3’,4’-OH和C環(huán)上的3-OH結(jié)構(gòu)有關(guān)[15]。
2.1.2 PPAR-γ-ABCA1途徑 在動(dòng)脈粥樣硬化形成的早期,由于血管內(nèi)膜破損,血液中的單核細(xì)胞進(jìn)入內(nèi)膜并分化為巨噬細(xì)胞,吞噬脂質(zhì),最終在血管壁上形成巨噬泡沫細(xì)胞[16]。三磷酸腺苷結(jié)合盒轉(zhuǎn)運(yùn) 體 A1 (ATP-binding cassette transporter A1,ABCA1)是一種整合膜蛋白質(zhì),它可調(diào)節(jié)細(xì)胞內(nèi)膽固醇代謝,促進(jìn)細(xì)胞內(nèi)游離膽固醇和磷脂流出,使細(xì)胞內(nèi)膽固醇處于穩(wěn)態(tài)(圖3)。ABCA1的下調(diào)導(dǎo)致細(xì)胞內(nèi)膽固醇水平升高,形成更多巨噬泡沫細(xì)胞[17]。

圖3 PPAR-γ-ABCA1信號(hào)途徑Fig.3 Pathway of PPAR-γ-ABCA
很多年前有研究發(fā)現(xiàn),花色苷尤其是矢車菊素-3-葡萄糖苷和芍藥素-3-葡萄糖苷可以增加小鼠腹腔巨噬細(xì)胞中游離膽固醇的流出,并且呈劑量 —效應(yīng)關(guān)系。這種作用是通過(guò)增加過(guò)氧化物酶體增殖物激活型受體-γ(PPAR-γ)的基因表達(dá),進(jìn)而上調(diào)ABCA1的表達(dá)(圖3)。矢車菊素葡萄糖苷與它的甲基化產(chǎn)物芍藥素葡萄糖苷之間沒有差異[18]。Jia等[19]研究發(fā)現(xiàn),矢車菊素實(shí)際上是作用于PPARs的亞型,其中與PPARα和PPARγ的作用高于PPARδ,矢車菊素的作用方式與一些藥物相似,它可以充當(dāng)生理上的PPARα。同時(shí)也發(fā)現(xiàn),矢車菊素的這種作用與其結(jié)構(gòu)中的4’-OH結(jié)構(gòu)有關(guān),這也解釋了上述中矢車菊素和芍藥素的作用效果沒有差異。CD40分子是一種跨膜糖蛋白質(zhì),屬于腫瘤壞死因子受體超家族(TNFR-SF)成員,可以介導(dǎo)多種信號(hào)轉(zhuǎn)導(dǎo)通路[20]。腫瘤壞死因子受體-相關(guān)因子2(TNFR2)可以與位于胞內(nèi)遠(yuǎn)膜側(cè)CD40結(jié)合,在CD40介導(dǎo)的信號(hào)途徑中發(fā)揮重要作用。Xia等[18]研究發(fā)現(xiàn),矢車菊素-3-葡萄糖苷、芍藥素-3-葡萄糖苷可以通過(guò)調(diào)節(jié)膽固醇分布來(lái)阻止TNFR2易位到脂質(zhì)筏,從而可以減緩由CD40誘導(dǎo)的炎癥反應(yīng),且呈劑量效應(yīng)關(guān)系。
2.1.3 Keap1-Nrf2途徑 轉(zhuǎn)錄因子NF-E2相關(guān)因子2(nuclear factor-E2-related factor2,Nrf2)使得細(xì)胞對(duì)外源性、內(nèi)源性毒素具有解毒作用。正常狀態(tài)下Nrf2與Keap1結(jié)合存在,當(dāng)出現(xiàn)氧化應(yīng)激時(shí)Keap1構(gòu)象發(fā)生變化,Nrf2脫落并進(jìn)入細(xì)胞核內(nèi),刺激一系列解毒、抗氧化酶基因編碼,進(jìn)而合成NADPH,谷胱甘肽S-轉(zhuǎn)移酶(GST),血紅素氧合酶-1(HO-1),谷氨酸半胱氨酸連接酶(GLC),谷胱甘肽過(guò)氧化物酶等細(xì)胞保護(hù)分子。清除活性氧、超氧陰離子、過(guò)氧化氫、氫氧自由基等[21]。Speciale等[22]研究發(fā)現(xiàn),在表皮細(xì)胞中矢車菊素可以誘導(dǎo)Nrf2活化,合成HO-1,抑制自噬并增加細(xì)胞活性,減少細(xì)胞死亡。Zhang等[23]用矢車菊素預(yù)處理β細(xì)胞,結(jié)果表明花色苷可以降低由于氧化應(yīng)激導(dǎo)致的自噬。花色苷可以激活轉(zhuǎn)錄因子Nrf2合成HO-1,抑制自噬過(guò)程,增加β細(xì)胞活性(圖4)。

圖4 Keap1-Nrf2信號(hào)通路Fig.4 Pathway of Keap1-Nrf2
2.1.4 其它相關(guān)機(jī)制 很多研究發(fā)現(xiàn),抑制PI3K/ Akt通路可以阻止內(nèi)皮細(xì)胞凋亡。Paixao等[24]研究發(fā)現(xiàn),天竺葵素-3-葡萄糖苷、矢車菊素-3-葡萄糖、飛燕草素-3-葡萄糖,可以通過(guò)抑制 Caspases 3和Caspases 9的活性來(lái)抑制細(xì)胞凋亡,3種花色苷中飛燕草素-3-葡糖糖苷作用最為明顯。花色苷的這種作用是通過(guò)降低由過(guò)氧亞硝酸鹽誘導(dǎo)的Akt的脫磷酸化來(lái)抑制PI3K/Akt信號(hào)途徑的激活。花色苷對(duì)心血管疾病的作用除了上述作用機(jī)制外,還有很多的機(jī)制都與其他因素有關(guān),如雌激素受體,微生物群等,這些都需要進(jìn)一步研究[25-27]。
2.2 抗腫瘤
腫瘤的發(fā)病率在我國(guó)不斷上升,已成為威脅居民健康的一大因素。腫瘤的形成是由于人體暴露于外界刺激如致癌物質(zhì)、紫外線、病毒、輻射等,造成體細(xì)胞基因突變。惡性腫瘤,也就是癌癥,發(fā)病前提是基因突變,但突變并非都會(huì)導(dǎo)致癌變。很多流行病學(xué)研究發(fā)現(xiàn),花色苷具有抗突變和抗腫瘤活性。Kamei等[28]在紅酒提取物抗癌試驗(yàn)中發(fā)現(xiàn),在所有紅酒提取物中花色苷具有最強(qiáng)的抑制結(jié)腸癌細(xì)胞HCT-15和胃癌細(xì)胞AGS生長(zhǎng)的活性。Yoshimoto等[29]用鼠傷寒桿菌TA98為試驗(yàn)對(duì)象,評(píng)價(jià)了4種甘薯塊根水提取物的抗突變活性,研究發(fā)現(xiàn)紫甘薯中的矢車菊素類和芍藥素類兩種花色苷,可有效地抑制雜環(huán)胺類誘導(dǎo)劑如Trp-P-1、Trp-P-2,和IQ引起的突變作用,并提出酰基化的花色苷比未酰基化的花色苷具有更強(qiáng)的抗突變作用。 花色苷的抗腫瘤活性主要在腫瘤細(xì)胞形成的3個(gè)階段發(fā)揮作用[30]。
2.2.1 抑制引發(fā)階段 花色苷在腫瘤形成的初始階段通過(guò)其抗氧化活性保護(hù)DNA免受損傷,進(jìn)而發(fā)揮其抗突變作用。花色苷的結(jié)構(gòu)中酚羥基的存在使其具有較強(qiáng)的清除ROS、過(guò)氧化氫、過(guò)氧自由基、超氧自由基(ROO·)等自由基的能力。花色苷的抗氧化性已在腸癌細(xì)胞、內(nèi)皮細(xì)胞、乳腺細(xì)胞等多種腫瘤系細(xì)胞模型中得到證明,同時(shí)還發(fā)現(xiàn)花色苷具有多樣化的解毒和抗致癌效應(yīng)。例如,花色苷可以激活二相解毒酶的表達(dá)。Shih等[31]在體外細(xì)胞實(shí)驗(yàn)中初步證明花色苷可以誘導(dǎo)二相的抗氧化酶和解毒酶的能力。他們用花色苷作用于Clone 9肝細(xì)胞和非惡性乳腺癌細(xì)胞,結(jié)果顯示:花色苷激活谷胱甘肽相關(guān)酶(谷胱甘肽還原酶、谷胱甘肽過(guò)氧化物酶、谷胱甘肽S-轉(zhuǎn)移酶)及NAD(P)H(醌還原酶),細(xì)胞抗氧化能力增強(qiáng)。花色苷的這種作用機(jī)制主要是通過(guò)激活這些酶的編碼基因上游階段的抗氧化反應(yīng)原件(ARE)來(lái)發(fā)揮作用,同時(shí)這也是保護(hù)細(xì)胞抗氧化應(yīng)激損傷的關(guān)鍵[32]。但是有研究發(fā)現(xiàn),花色苷同時(shí)具有抗氧化和促進(jìn)氧化兩種相反特性,在不同的細(xì)胞環(huán)境可以表達(dá)出不同的特性。與一些抗腫瘤藥物相似,花色苷增加細(xì)胞內(nèi)ROS含量,造成DNA損傷,引發(fā)其凋亡,可能花色苷的促氧化作用在抗腫瘤機(jī)制中發(fā)揮更大作用[33]。目前很多抗突變機(jī)制不是很清楚,需要進(jìn)一步去研究。
2.2.2 抑制促進(jìn)階段 在啟動(dòng)細(xì)胞到前癌細(xì)胞發(fā)展階段,花色苷可以通過(guò)抗炎作用、抗增殖作用來(lái)抑制腫瘤細(xì)胞增殖。很多研究已經(jīng)表明,炎癥反應(yīng)具有促癌作用,其中多種癌癥的發(fā)生與NF-κB和COX-2的活性升高有關(guān)[34]。在上述心血管疾病中,已說(shuō)明花色苷通過(guò)抑制NF-κB信號(hào)途徑發(fā)揮抗炎作用。在很多的癌細(xì)胞模型中,也證明花色苷的抗腫瘤效應(yīng)與抑制NF-κB和COX-2活性有關(guān)[35]。血管新生是從現(xiàn)有血管網(wǎng)絡(luò)形成新血管的過(guò)程,是腫瘤生長(zhǎng)和轉(zhuǎn)移的一個(gè)重要因素[36]。很多血管新生活化因子屬于血管內(nèi)皮生長(zhǎng)因子(VEGF)家族,所以在惡性腫瘤中VEGF含量較高。很多研究發(fā)現(xiàn),花色苷的抗血管新生作用機(jī)制是通過(guò)抑制H2O2或TNF-α誘導(dǎo)的HaCaT細(xì)胞中VEGF的高表達(dá),同時(shí)減少VEGF及其受體在內(nèi)皮細(xì)胞的表達(dá)來(lái)實(shí)現(xiàn)[36-37]。Huang等在小鼠JB6細(xì)胞研究中發(fā)現(xiàn),花色苷降低VEGF的表達(dá)是通過(guò)抑制PI3K/Akt信號(hào)通路來(lái)發(fā)揮作用[36]。
2.2.3 抑制進(jìn)展 在腫瘤到癌變的發(fā)展階段,花色苷可以通過(guò)促進(jìn)細(xì)胞凋亡、抑制細(xì)胞轉(zhuǎn)移來(lái)發(fā)揮抗癌作用。細(xì)胞凋亡和細(xì)胞程序性死亡在正常細(xì)胞的生長(zhǎng)發(fā)育中起重要作用,而在癌細(xì)胞中基因發(fā)生特異性改變,細(xì)胞不能正常凋亡。很多高效的防癌劑就是通過(guò)誘導(dǎo)前癌細(xì)胞或惡性腫瘤細(xì)胞凋亡起到治療作用。在多種細(xì)胞模型研究中,花色苷、花青素或者富含花色苷的葡萄、草莓提取物都表現(xiàn)出促進(jìn)細(xì)胞凋亡的作用[38-43]。它們通過(guò)內(nèi)源性(線粒體)和非內(nèi)源性(細(xì)胞凋亡抑制因子FAS)兩種途徑誘導(dǎo)凋亡[44]。在線粒體的凋亡信號(hào)途徑中花色苷作用于癌細(xì)胞,增加了線粒體膜電位,釋放細(xì)胞色素C,調(diào)節(jié)半胱氨酸蛋白酶Caspase依賴的抗凋亡或促凋亡蛋白質(zhì)表達(dá)。在細(xì)胞膜上的死亡受體途徑中,花色苷通過(guò)調(diào)節(jié)癌細(xì)胞中FAS及其配體FASL來(lái)激活半胱氨酸蛋白酶Caspase,進(jìn)而促進(jìn)凋亡。另外,用花色苷處理的癌細(xì)胞中ROS水平升高,隨后細(xì)胞凋亡,這也表明有ROS介導(dǎo)的線粒體半胱氨酸蛋白酶非依賴性途徑,在花色苷誘導(dǎo)癌細(xì)胞凋亡中起到重要作用[45]。細(xì)胞的侵襲和轉(zhuǎn)移是導(dǎo)致腫瘤病人死亡的主要原因。侵襲過(guò)程中第一步也是最關(guān)鍵的一步就是腫瘤細(xì)胞和間質(zhì)干細(xì)胞分泌的蛋白酶降解細(xì)胞基質(zhì)膜膠原。細(xì)胞基質(zhì)膜膠原的降解不僅取決于蛋白酶的數(shù)量,還和蛋白酶的激活劑與抑制劑有重要關(guān)系。Nagase[46]等用茄子的花色苷提取物(主要是飛燕草素類花色苷)作用于HT-1080細(xì)胞;Coates[47]等人采用漿果提取物作為受試物作用于直腸癌細(xì)胞,結(jié)果均顯示了花色苷在Matrigel基質(zhì)上的抗侵襲效應(yīng)。花色苷主要通過(guò)激活基質(zhì)金屬蛋白酶抑制因子(TIMP-2)、纖溶酶原激活物抑制物(PAI),抑制基質(zhì)金屬蛋白酶(MMP)和尿激酶型纖溶酶激活物的表達(dá),以阻止癌細(xì)胞的侵襲和轉(zhuǎn)移[48]。在腫瘤的治療過(guò)程中,化療和放療對(duì)人體毒副作用很大,而通過(guò)誘導(dǎo)細(xì)胞分化可以大大降低治療的毒性。Fimognari等[49]研究發(fā)現(xiàn),矢車菊素-3-葡萄糖苷可以有效地促進(jìn)白細(xì)胞的分化,結(jié)果顯示硝基四唑氮藍(lán)(NBT)染色陽(yáng)性率減低,具有萘酚AS-D氯乙酸活性,說(shuō)明粒細(xì)胞/單核細(xì)胞分化;細(xì)胞粘附能力增加,細(xì)胞萘乙酸甲酯酶陽(yáng)性率升高,說(shuō)明白血病細(xì)胞向單核細(xì)胞/巨噬細(xì)胞轉(zhuǎn)化;同時(shí)細(xì)胞的增殖能力明顯減弱。Rodrigo等用黑木梅花色苷提取物處理口腔癌細(xì)胞,結(jié)果顯示細(xì)胞內(nèi)轉(zhuǎn)谷氨酰胺酶被激活,促使角質(zhì)素的表達(dá),促進(jìn)了細(xì)胞分化[50]。雖然花色苷可以抑制癌細(xì)胞或腫瘤細(xì)胞增殖,誘導(dǎo)凋亡,但細(xì)胞不同,其作用有很大差別,陵文華等[5]在《膳食花色苷與健康中》進(jìn)行了詳細(xì)分類總結(jié)。在進(jìn)行體外實(shí)驗(yàn)時(shí),由于原代細(xì)胞具有不能連續(xù)增殖的局限,所以常采用一些癌細(xì)胞或瘤細(xì)胞作為模型,以研究花色苷對(duì)該類細(xì)胞關(guān)鍵因子(如膽固醇、孕酮等)代謝的干預(yù)作用,然而花色苷對(duì)部分這樣的細(xì)胞不具有誘導(dǎo)凋亡的作用,如R2C細(xì)胞、HepG2細(xì)胞等。
2.3 抗糖尿病
糖尿病是一組以高血糖為特征的代謝性疾病,同時(shí)還會(huì)引起一系列并發(fā)癥,給人類健康帶來(lái)巨大威脅。其主要有兩種類型:I型糖尿病,又稱胰島素依賴型糖尿病,由于β細(xì)胞自身免疫破壞,多發(fā)病于青少年時(shí)期;Ⅱ型糖尿病,特征是胰島β細(xì)胞功能進(jìn)行性減退和胰島素抵抗。流行病學(xué)研究發(fā)現(xiàn),經(jīng)常攝取富含多酚類物質(zhì)的植物性食品,可以降低肥胖、Ⅱ型糖尿病和其他胰島素相關(guān)類疾病的發(fā)病風(fēng)險(xiǎn)[51]。花色苷的抗糖尿病作用機(jī)制,主要是通過(guò)減少氧化應(yīng)激、保護(hù)β細(xì)胞、改善胰島素抵抗、促進(jìn)胰島素分泌來(lái)發(fā)揮作用。
2.3.1 減少氧化應(yīng)激 機(jī)體處于高血脂、高血糖狀態(tài)可引發(fā)自由基增多,進(jìn)而引起氧化應(yīng)激,糖尿病的產(chǎn)生與氧化應(yīng)激密切相關(guān)[52]。Sugimoto[53]等用桑葚提取物作用于患有糖尿病的Wistar大鼠,結(jié)果顯示其肝臟中氧化型谷胱甘肽濃度降低,同時(shí)巴比妥酸反應(yīng)物質(zhì)(TBARS)呈減少趨勢(shì)。同時(shí)Feshani[54]等用花色苷作用于患有糖尿病的Wistar大鼠,結(jié)果發(fā)現(xiàn)其紅細(xì)胞中過(guò)氧化氫酶、超氧化物歧化酶、谷胱甘肽過(guò)氧化物酶濃度均增加。
胰島移植是治療I型糖尿病的有效手段,但是由于氧化應(yīng)激,導(dǎo)致移植后大量細(xì)胞死亡。胰島分離過(guò)程中各種應(yīng)激反應(yīng)導(dǎo)致ROS大量產(chǎn)生,損傷胰島細(xì)胞。大量研究已證明花色苷具有清除ROS的功能,保護(hù)細(xì)胞活性(圖5)。張波[51]等用楊梅花色苷作用于胰島細(xì)胞系INS,結(jié)果顯示花色苷可以有效地清除ROS,減少由H2O2誘導(dǎo)的自噬、凋亡,其作用機(jī)制是通過(guò)激活ERK1/2及PI3K/Akt通路,上調(diào)血紅素氧合酶-1(HO-1),保護(hù)胰島細(xì)胞。

圖5 花色苷改善胰島素抵抗的可能作用機(jī)制Fig.5 Potential mechanism of anthocyanin improving insulin resistance
2.3.2 改善胰島素抵抗 胰島素抵抗指由于各種原因使胰島素的促進(jìn)葡萄糖的吸收和利用率下降,高血糖、血漿中游離脂肪酸的增加、ROS引起的氧化應(yīng)激、內(nèi)質(zhì)網(wǎng)應(yīng)激及脂肪細(xì)胞功能障礙等與胰島素抵抗密切相關(guān)[55-59]。花色苷可以通過(guò)調(diào)節(jié)脂肪細(xì)胞因子的合成與分泌,增加葡萄糖轉(zhuǎn)運(yùn)蛋白-4(GLUT4),減少視黃醇結(jié)合蛋白質(zhì)(RBP4)的表達(dá),活化AMPK,減緩氧化應(yīng)激,提高胰島素敏感性,從而改善胰島素抵抗[60-63](圖5)。
2.3.3 保護(hù)β細(xì)胞 Ⅱ型糖尿病主要由胰腺β細(xì)胞功能障礙和胰島素抵抗導(dǎo)致,盡管β細(xì)胞可以分泌大量胰島素來(lái)緩和胰島素抵抗,但是β細(xì)胞出現(xiàn)功能障礙,胰島素分泌不足,導(dǎo)致高血糖癥,進(jìn)而引發(fā)氧化應(yīng)激,誘導(dǎo)β細(xì)胞凋亡[64-66]。很多體內(nèi)外研究證明,花色苷保護(hù)β細(xì)胞、抑制高血糖癥是通過(guò)其抗氧化和調(diào)制作用[62,67-70]。Martineau[68]等在體外實(shí)驗(yàn)中發(fā)現(xiàn),藍(lán)莓提取物可以促進(jìn)胰腺βTC-tet細(xì)胞增殖,同時(shí)還發(fā)現(xiàn)花色苷可以抑制大鼠腎上腺嗜鉻細(xì)胞瘤細(xì)胞PC12在高糖環(huán)境中的凋亡。Jayaprakasam等[71]在C57BL/6 CB小鼠實(shí)驗(yàn)中同時(shí)喂食高脂食物和櫻桃花色苷,結(jié)果顯示小鼠胰島結(jié)構(gòu)受到保護(hù),胰島素分泌增加。花色苷通過(guò)調(diào)節(jié)與凋亡有關(guān)的蛋白質(zhì),抑制胰島β細(xì)胞凋亡。Nizamutdinova等研究發(fā)現(xiàn),花色苷的抗凋亡作用是通過(guò)下調(diào)促凋亡蛋白質(zhì)Caspase 3和Bax,同時(shí)增加Bcl2表達(dá)來(lái)實(shí)現(xiàn)[62]。
2.3.4 促進(jìn)胰島素分泌 胰島細(xì)胞β細(xì)胞功能障礙可能會(huì)引起胰島素分泌不足,然而在一些典型的藥物治療中如磺酰脲類會(huì)導(dǎo)致低血糖[72]。花色苷作為一種天然產(chǎn)物具有促進(jìn)胰島素分泌的作用,能以一些典型克服藥物治療缺陷。Seeram等[73]研究發(fā)現(xiàn),櫻桃花色苷可以促使胰島素大量分泌,進(jìn)而發(fā)揮抗糖尿病活性。花色苷結(jié)構(gòu)不同,促進(jìn)胰島素分泌的作用也不同。Jayaprakasam等[74]研究發(fā)現(xiàn),在飛燕草素-3-葡萄糖苷、矢車菊素-3-葡萄糖苷、天竺葵素-3-葡萄糖苷3種花色苷中,飛燕草素-3-葡萄糖苷作用最強(qiáng),矢車菊素-3-葡萄糖苷次之。這表明花色苷的促胰島素分泌作用可能與其B環(huán)結(jié)構(gòu)上的羥基數(shù)目有關(guān)。但是在花青素作用中,只有天竺葵素表現(xiàn)出促胰島素分泌的作用。
2.4 其它作用
花色苷除了具有以上主要的生理活性外,還有很多其它的活性,如防治神經(jīng)退行性疾病、保護(hù)視力、對(duì)急性肝損傷的保護(hù)等。阿茲海默癥是最常見的神經(jīng)退行性疾病,神經(jīng)系統(tǒng)會(huì)隨著年齡的增長(zhǎng)而退化,另外氧化應(yīng)激和炎癥反應(yīng)也會(huì)對(duì)神經(jīng)系統(tǒng)造成損害。藍(lán)莓中主要花色苷為矢車菊素-3-葡萄糖苷,Robert Krikorian等用藍(lán)莓汁干預(yù)輕度認(rèn)知功能障礙(mild cognitive impairment,MCI)患者18周,結(jié)果顯示藍(lán)莓可以有效改善MCI患者的記憶。目前很多研究證明,花色苷改善神經(jīng)退行性疾病的機(jī)制主要與花色苷的減緩氧化應(yīng)激和抗炎作用有關(guān)[75-77]。
花色苷可以改善人在夜間的視力,提高暗適應(yīng)能力,另外還可以保護(hù)視力,其途徑主要是改善眼睛的微循環(huán),抑制視網(wǎng)膜光化學(xué)損傷和神經(jīng)節(jié)細(xì)胞凋亡等[78-79]。Matsumoto等的研究表明:口服富含矢車菊素-3-葡萄糖苷和矢車菊素-3-鼠李糖苷的黑醋栗提取物,能夠減輕眼睛疲勞、提高夜間視力和改善視覺瞬間改變適應(yīng)性[80]。
另外,很多研究報(bào)道了花色苷對(duì)急性肝損傷、脂肪肝等具有很好的保護(hù)作用。Yong等研究了紫甘薯花色苷對(duì)過(guò)氧化叔丁醇(tert-butyl hydroperoxide,t-BHP)誘導(dǎo)的HepG2細(xì)胞和小鼠肝臟損傷的保護(hù)作用。結(jié)果表明,紫甘薯花色苷的保護(hù)作用主要是通過(guò)清除ROS,同時(shí)調(diào)節(jié)由Akt和ERK1/2/Nrf2信號(hào)途徑介導(dǎo)的HO-1表達(dá)來(lái)發(fā)揮作用[81]。花色苷對(duì)乙醇引起的肝損傷有保護(hù)作用,Domitrovic等用黑米花色苷提取物作用于酒精性脂肪肝大鼠,結(jié)果表明黑米花色苷可以有效地減輕肝臟炎癥損傷,同時(shí)降低谷草轉(zhuǎn)氨酶(glutamic oxaloacetic transaminase,GOT)和谷丙轉(zhuǎn)氨酶(glutamic pyruvic transaminase,GPT)的水平[82]。
花色苷作為一種天然的食用色素,具有各種生理活性,但是很多研究發(fā)現(xiàn),不同結(jié)構(gòu)的花色苷功能差別很大,所以探究花色苷在體內(nèi)、體外的代謝產(chǎn)物,及何種代謝產(chǎn)物發(fā)揮生理活性,這仍需作進(jìn)一步研究。另外,很多實(shí)驗(yàn)研究證實(shí)了花色苷的抗癌作用,但是流行病學(xué)研究并沒有證明花色苷對(duì)人類癌癥風(fēng)險(xiǎn)的保護(hù)作用,未來(lái)仍需進(jìn)一步驗(yàn)證。除了對(duì)上述疾病的營(yíng)養(yǎng)干預(yù)外,未來(lái)更應(yīng)該遵循“疾病預(yù)防前移的飲食干預(yù)原則”,研究花色苷對(duì)食品中有害物質(zhì)暴露的營(yíng)養(yǎng)干預(yù),如重金屬、氯丙醇等有毒物質(zhì)暴露的生殖和發(fā)育毒性損傷的干預(yù),以及花色苷對(duì)紫外線暴露的皮膚損傷的干預(yù),及其機(jī)制研究也可能是未來(lái)關(guān)注的熱點(diǎn),為花色苷營(yíng)養(yǎng)功能開發(fā)和營(yíng)養(yǎng)干預(yù)機(jī)制的研究拓寬思路,實(shí)現(xiàn)花色苷功能的多樣化探索。
[1]劉鄰渭.食品化學(xué)[M].北京:中國(guó)農(nóng)業(yè)出版社,1998:116-121.
[2]劉志皋.食品添加劑手冊(cè)[M].北京:中國(guó)輕工業(yè)出版社,1999:91-120.
[3]凌關(guān)庭.食品添加劑手冊(cè)[M].北京:中國(guó)化學(xué)工業(yè)出版社,1997:543-545.
[4]ANNANARYJU D S.Antioxidant ability of anthocyanins against ascorbic acid oxidation[J].Phytochemistry,1997,45(4):671-674.
[5]陵文華,郭文輝.膳食花色苷與健康[M].北京:科學(xué)出版社,2009:4-5.
[6]GIUSTI M M,RONALD E W.Acylated anthocyanins from edible sources and their applications in food systems[J].Biochemical Engineering,2003,14(3):217-225.
[7]莎米拉·吐爾遜,加娜爾·莫勒達(dá)別克,王效杰.干部人群慢性疾病患病情況調(diào)查分析[J].中國(guó)醫(yī)刊,2013,48(5):55-56. TURSUN Sharmila,MOLLERDERBUICK Jianar,WANG Xiaojie.Research about cadres of people with chronic disease prevalence[J].Chinese Journal of Medicine,2013,48(5):55-56.(in Chinese)
[8]PASCUAL T S,MORENO D A,GARCIA V C.Flavonid intake and cardiovascular disease mortality in a prospective cohort of US adults[J].American Journal of Clinical Nutrition,2012,95(2):454-464.
[9]MINK P J,SCARFFORD C G,BARRAI L M,et al.Flavonoid intake and cardiovascular disease mortality:A ProsPective study in postmenppausal women[J].American Journal of Clinical Nutrition,2007,85(3):895-909.
[10]CASSIDY A,MUKAMAL K J,LIU L,et al.High anthocyanin intake is associated with a reduced with a reduced risk of myocardial infraction in young and middle-aged women[J].Circulation,2013,127(2):188-196.
[11]陳鐵樓.NF-κB的激活、阻斷及牙周病的關(guān)系研究[J].同濟(jì)大學(xué)學(xué)報(bào).2010,31(3):1–2. CHEN Tielou.The relationship between active or blocking of NF-κB and periodontosis[J].Journal of Tongji University,2010,31(3):1-2.(in Chinese)
[12]HAYDEN M S,GHOSH S.Signaling to NF-κB[J].Genes Development,2004,18(18):2195-2224.
[13]POULOSE S M,F(xiàn)ISHER D R,LARSON J,et al.Anthocyanin-rich acai(Euterpe oleracea Mart.)fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells[J].Journal of Agricultural and Food Chemistry,2012,60(4):1084-1093.
[14]HOU D X,YANAGITA T,UTO T,et al.Anthocyanidins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages:Structure-activity relationship and molecular mechanisms involved[J].Biochem Pharmacol,2005,70(3):417-425.
[15]YI L,CHEN C Y,JIN X,et al,Differential suppression of intracellular reactive oxygen species-mediated signaling pathway in vascular endothelial cells by several subclasses of flavonoids[J].Biochimie,2012,94(9):2035-2044.
[16]YANCEY P G,BORTINCK A E,KELLNER W G,et al.Importance of different pathways of cellular cholesterol efflux[J]. Arterioscler Theomb Vasc Biol,2003,23(5):712-719.
[17]尹凱.ABCA1介導(dǎo)載脂蛋白A1調(diào)節(jié)巨噬細(xì)胞炎癥反應(yīng)及其機(jī)制[D].廣州:南華大學(xué),2012:95-96.
[18]XIA M,HOU M,ZHU H,et al.Anthocyanins induce cholesterol efflux from mouse peritoneal macrophages:The role of the peroxisome proliferator-activated receptor{gamma}-Liver X receptor{alpha}-ABCA1 pathway[J].Journal of Biological Chemistry,2005,280(44):36792-36801.
[19]JIA Y,KIM J Y,JUN H J,et al.Cyanidin is an agonistic ligand for peroxisome proliferator-activated receptor-alpha reducing hepatic lipid[J].Biochimica et Biophysica Acta,2011,1831(4):698-708.
[20]TOUBI E,SHOENFELD Y.The role of CD40-CD154interations in autoimmunity and the benefit of disrupting this pathway[J]. Autoimmunity,2004,37(6-7):657-464.
[21]胡敏.Keap1/Nrf2信號(hào)通路對(duì)再生肝細(xì)胞周期的調(diào)控[D].合肥:安徽醫(yī)科大學(xué),2014:9-12.
[22]SPECIALE A,ANWAR S,CANALI R,et al.Cyanidin-3-O-glucoside counters the response to TNF-alpha of endothelial cells by activating Nrf2 pathway[J].Molecular Nutrition and Food Research,2013,57(11):1979-1987.
[23]ZHANG B,BUYA M,QIN W,et al.Anthocyanins from Chinese bayberry extract activate transcription factor Nrf2 in β cells and negatively regulate oxidative stress-induced autophagy[J].Journal of Agricultural and Food Chemistry,2013,61(37):8765-8772.
[24]PAIXAO J,DINIS T C,ALMEIDA L M.Dietary anthocyanins protect endothelial cells against peroxynitrite-induced mitochondrial apoptosis pathway and Bax nuclear translocation:an in vitro approach[J].Apoptosis,2011,16(10):976-989.
[25]AVILA M,HIDALGO M,MORENO C S,et al.Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus[J]. Food Research International,2009,42(10):1453-1461.
[26]HIDALGO M,ORUNA-CONCHA M J,KOLIDA S G,et al.Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth[J].Journal of Agricultural and Food Chemistry,2012,60(15):3882-3890.
[27]SAS L,LARDON F,VERMEULEN P B,et al.The interaction between ER and NF-κB in resistance to endocrine therapy[J]. Breast Cancer Research and Treatment,2012,14(4):212.
[28]KOIDE T,HASHIMOTO Y,KAMEI H,et al.Antitumor effect of anthocyanin fractions extracted from red soybeans and red beans in vitro and in vivo[J].Cancer Biother Radiopharm,1997,12(4):277-280.
[29]YOSHIMOTO M.Antimutagenicity of sweet potato roots[J].Bioscience Biotechnology Biochemistry,1999,63(3):537-541.
[30]HOU D X.Potential mechanisms of cancer chemoprevention by anthocyanins[J].Current Molecular Medicine,2003,3(2):149-159.
[31]SHIH P H,YEH C T,YEN G C.Effects of anthocyanidin on the inhibition of proliferation and induction of apoptosis in human gastric adenocarcinoma cells[J].Food and Chemical Toxicology,2005,55(10):1557-1566.
[32]SHIH P H,YEH C T,YEN G C.Anthocyanins induce the activation of phase II enzymes through the antioxidant response element pathway against oxidative stress induced apoptosis[J].Journal of Agricultural and Food Chemistry,2007,55(23):9427-9435.
[33]常徽,糜漫天,凌文華.黑米花色苷及聯(lián)合化療藥物對(duì)不同腫瘤細(xì)胞增殖的影響 [J].第三軍醫(yī)大學(xué)學(xué)報(bào),2007,29(20):1943-1946. CHANG Hui,NI Mantian,LING Wenhua.Effects of anthocyanin-rich extract from black rice alone or combined with chemo-therapeutic agents on proliferation of different cancer cells[J].Acta Academiae Medicinae Militaris Tertiae,2007,29(20):1943-1946.(in Chinese)
[34]PRIOR R L,WU X.Anthocyanins:Structural characteristics that result in unique metabolic patterns and biol ogical activities[J]. Free Radical,2006,40(10):1014-1028.
[35]WANG L S,STONER G D.Anthocyanins and their role in cancer prevention[J].Cancer Letters,2008,269(2):281-290.
[36]HUANG C,LI J,SONG L,et al.Black raspberry extracts inhibit benzo(a)pyrene diol-epoxide-induced activator protein 1 activation and VEGF transcription by targeting the phosphotidylinositol 3-kinase/Akt pathway[J].Cancer Research,2006,66(1):581-587.
[37]BAGCHI D,SEN C K,BAGCH M,et al.Anti-angiogenic,antioxidant and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula[J].Biochemistry Mosc,2004,69(1):75-80.
[38]RODRIGO K A,RAWAL Y,RENNER R J,et al.Suppression of the tumorigenic phenotype in human oral squamous cell carcinoma cells by an ethanol extract derived from freeze-dried black raspberries[J].Nutrition and Cancer,2006,54(1):58-68.
[39]AFAQ F,SYED D N,MALIK A,et al.Delphinidin,an anthocyanidin in pigmented fruits and vegetables,protects human HaCaT keratinocytes and mouse skin against UVB-mediated oxidative stress and apoptosis[J].Journal of Investigative Dermatology,2007,127(1):222-232.
[40]SEERAM N P,ADAMS L S,ZHANG Y,et al.Blackberry,black raspberry,blueberry,cranberry,red raspberry,and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro [J].Journal of Agricultural and Food Chemistry,2006,54(25):9329-9339.
[41]CHEN P N,CHU S C,CHIOU H L,et al.Cyanidin 3-glucoside and peonidin 3-glucoside inhibit tumor cell growth and induce apoptosis in vitro and suppress tumor growth in vivo[J].Nutrition and Cancer,2005,53(2):232-243.
[42]REDDIVARI L,VANAMALA J,CHINTHARLAPALLI S,et al.Anthocyanin fraction from potato extracts is cytotoxic to prostate cancer cells through activation of caspase-dependent and caspase-independent pathways,Car-cinogenesis[J]. Carcinogenesis,2007,28(10):2227-2235.
[43]MARTIN S,GIANNONE G,ANDRIANTSITOHAINA R,et al.Delphinidin,an active compound of red wine,inhibits endothelial cell apoptosis via nitric oxide pathway and regulation of calcium homeostasis[J].British Journal of Pharmacology,2003,139(6):1095-1102.
[44]CHANG Y C,HUANG H P,HU J D,et al.Hibiscus anthocyanins rich extract-induced apoptotic cell death in human promyelocytic leukemia cells[J].Toxicology and Applied Pharmacology,2005,205(3):201-212.
[45]FENG R,NI H M,WANG S Y,et al.Cyanidin-3-rutinoside,a natural polyphenol antioxidant,selectively kills leukemic cells by induction of oxidative stress[J].Journal of Biological Chemistry,2007,282(18):13468-13476.
[46]NAGASE H,SASAKI K,KITO H,et al.Inhibitory effect of delphinidin from Solanum melongena on human fibrosarcoma HT-1080 invasiveness in vitro[J].Planta Medica,1998,64(3):216-219.
[47]COATES E M,POPA G,GILL C I,et al.Colon-available raspberry polyphenols exhibit anti-cancer ects on in vitro models of colon cancer[J].Journal of Carcinogenesis,2007(6):4.
[48]BRANDSTETTER H,GRAMS F,GLITZ D,et al.The 1.8-A crystal structure of a matrix metalloproteinase 8-barbiturate inhibitor complex reveals a previously unobserved mechanism for collagenase substrate recognition[J].Journal of Biological Chemistry,2001,276(20):17405-17412.
[49]FIMOGNARI C,BERTI F,NUSSE M,et al.Induction of apoptosis in two human leukemia cell lines as well as dierentiation in human promyelocytic cells by cyanidin-3-O-beta-glucopyranoside[J].Biochemistry Pharmacology,2004,67(11):2047-2056.
[50]RODRIGO K A,RAWAL Y,RENNER R J,et al.Suppression of the tumorigenic phenotype in human oral squamous cell carcinoma cells by an ethanol extract derived from freeze-dried black raspberries[J].Nutrition and Cancer,2006,54(1):58-68.
[51]張波.楊梅花色苷對(duì)胰島細(xì)胞氧化應(yīng)激損傷的保護(hù)作用及其機(jī)制探討[D].杭州:浙江大學(xué),2010:5-89.
[52]BAYNES J W,THORPE S R.Role of oxidative stress in diabetic complications:A new perspective on an old paradigm[J]. Diabetes,1999,48(1):1-9.
[53]SUGIMOTO E,IGARACHI K,KUBO K,et al.Protective effects of boysenberry anthocyanins on oxidative stress in diabetic rats[J].Food Science and Technology Research,2003,9(4):345-349.
[54]FESHANI A M,KOUHSAR S M,MOHAMMADI S.Vaccinium arctostaphylos,a common herbal medicine in Iran:Molecular and biochemical study of its antidiabetic effects on alloxan-diabetic Wistar rats[J].Journal of Ethnopharmacology,2011,133(1):67-74.
[55]ARAKI E,OYADOMARI S,MORI M.Endoplasmic reticulum stress and diabetes mellitus[J].Internal Medicine,2003,42(1):7-14.
[56]DONATH M Y,SHEOLSON S E.Type 2 diabetes as an inflammatory disease[J].Nature Reviews Immunology,2011,11(2):98-107.
[57]DRESNER A,LAURENT D,MARCUCCI M,et al.Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity[J].The Journal of Clinical Investigation,1999,103(2):253-259.
[58]HOUSTIS N,ROSEN E D,LANDER E S.Reactive oxygen species have a causal role in multiple forms of insulin resistance[J]. Nature,2006,440(7086):944-948.
[59]TSUDA T,UENO Y,KOJO H,et al.Gene expression profile of isolated rat adipocytes treated with anthocyanins[J].Biochimica et Biophysica Acta,2005,1733(2-3):137-147.
[60]DeFuria J,Bennett G,Strissel K J,et al.Dietary blueberry attenuates whole-body insulin resistance in high hat-fed mice by reducing adipocyte death and its inflammatory sequelae[J].The Journal of Nutrition,2009,139(8):1-7.
[61]SASAKI R,NISHIMURA N,HOSHINO H,et al.Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to down regulation of retinol binding protein 4 expression in diabetic mice[J].Biochemical Pharmacology,2007,74(11):1619-1627.
[62]NIZAMUTDINOVA I T,JIN Y C,CHUNG J,et al.The anti-diabetic effect of anthocyanins in streptozotocin-induced diabetic rats through glucose transporter 4 regulation and prevention of insulin resistance and pancreatic apoptosis[J].Molecular Nutrition&Food Research,2009,53(11):1419-1429.
[63]TAKIKAWA M,INOUE S,HORIO F,et al.Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase in diabetic mice[J].The Journal of Nutrition,2010,140(3):527-533.[64]Ahrén B.Type 2 diabetes,insulin secretion and β-cell mass[J].Current Molecular Medicine,2005,5(3):275-286.
[65]HUNT J V,SMITH C C,WOLFF S P.Autoxidative glycosylation and possible involvement of peroxides and free radicals in LDL modi cation by glucose[J].Diabetes,1990,39(11):1420-1424.
[66]KANETO H,KAJIMOTO Y,MIYAGAWA J,et al.Bene cal effects of antioxidants in diabetes,possible protection of pancreatic β-cells against glucose toxicity[J].Diabetes,1999,48(12):2398-2406.
[67]Jurgoński J,Juskiewicz Z.Ingestion of black choke berry fruit extract leads to intestinal and systemic changes in a rat model of prediabetes and hyperlipidemia[J].Plant Foods for Human Nutrition,2008,63(4):176-182.
[68]MARTINEAU L C,COUTURE A,SPOORA S,et al.Anti-diabetic properties of the Canadian low bush blueberry[J].Vaccinium angustifolium Ait Phytomedicine,2006,13(9-10):612-623.
[69]ROY M,SEN S,CHAKRABORTI A S.Action of pelargonidin on hyperglycemia and oxidative damage in diabetic rats:Implication for glycation-induced hemoglobin modification[J].Life Sciences,2008,82(21-22):1102-1110.
[70]ZHANG B,KANG M,XIE Q,et al.Anthocyanins from Chinese bayberry extract protect β cells from oxidative stress-mediated injury via HO-1 upregulation[J].Journal of Agricultural and Food Chemistry,2011,59(2):537-545.
[71]JAYAPRAKASAM B,OLSON L K,SCHUTZKI R E,et al.Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in Cornelian cherry(Cornus mas)[J].Journal of Agricultural and Food Chemistry,2006,54(1):243-248.
[72]STUMVOLL M,GOLDSTEIN B J,HAEFTEN T W.Type 2 diabetes:Principles of pathogenesis and therapy[J].The Lancet,2005,365(9647):1333-1346.
[73]SEERAM N P,CHANDRA A,NAIR M G.Characeterization,quantification,and bioactivities of anthocyanins in Cornus species[J].Journal of Agricultural and Food Chemistry,2002,50(9):2519-2523.
[74]JAYAPRAKAS A M,VAREED S K,OLSON L K,et al.Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits[J].Journal of Agricultural and Food Chemistry,2005,53(1):28-31.
[75]DUFFY K B,SPANGLER E L,DEVAN B D,et al.A blueberry-enriched diet provides cellular protection against oxidative stress and reduces a kainite-induced learning impairment in rats[J].Neurobiol Aging,2008,29(11):1680-1689.
[76]PAPANDREOU M A,DIMAKOPOULOU A,LINARDAKI Z I,et al.Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice,brain antioxidant markers and acetylcholinesterase activity[J].Behavioural Brain Research,2009,198(2):352-358.
[77]龐偉,蔣與剛,楊紅潔,等.藍(lán)莓提取物對(duì)H2O2誘導(dǎo)的體外培養(yǎng)的大鼠海馬神經(jīng)元氧化損傷的保護(hù)作用[J].中國(guó)應(yīng)用生理學(xué)雜志,2010,26(1):51-54. PANG Wei,JIANG Yugang,YANG Hongjie,et al.Cytoprotective effect of blueberry extracts against oxidative damage of rat hippocampal neurons induced by H2O2[J].Chinese Journal of Applied Physiology,2010,26(1):51-54.(in Chinese)
[78]JAYLE G E,AUBRY M,GAVINI H,et al.Study concerning the action of anthocyanoside extracts of Vaccinium Mytillus on night vision[J].Ann Ocul,1965,198(6):556-562.
[79]GHOSH D,KONISHI T.Anthocyanins and anthocyanin-rich extracts:Role in diabetes and eye function[J].Asia Pacific Journal of Clinical Nutrition,2007,16(2):200-208.
[80]MATSUMOTO H,INABA H,KISHI M,et al.Orally administered delphinidin-3-rutinoside and cyaniding-3-rutinoside are directly absorbed in rats and humans and appear in the blood as the intact forms[J].Journal of Agricultural and Food Chemistry,2001,49(3):1546-1551.
[81]YONG P H,JAE H C,CHOIB J M,et al.Protective mechanisms of anthocyanins from purple sweet potato against tert-butyl hydroperoxide-induced hepatotoxicity[J].Food and Chemical Toxicology,2011,49(9):2081-2089.
[82]HOU Z,QIN P,REN G.Effect of anthocyanin-rich extract from black rice on chronically alcohol-induced liver damage in rats[J]. Journal of Agricultural and Food Chemistry,2010,58(5):3191-3196.
Advance in Molecular Mechanism of Nutrition Interventions of Anthocyanins for Chronic Disease
BAI Weibin1,ZHU Cuijuan1,HU Yunfeng1,JIAO Rui1,WU Shi1,SUN Jianxia*2
(1.Department of Food Science and Engineering,Jinan University,Guangzhou 510632,China;2.School of Chemical Engineering and Light Industy,Guangdong University of Technology,Guangzhou 510090,China)
Anthocyanins are a natural edible functional pigment,which had been proved to have a good nutrition intervention on various chronic diseases,such as cardiovascular diseases,cancers,and diabetes.In this paper,the pathways and molecular mechanisms of anthocyanins acting on chronic diseases were mainly summarized,which will provide references for the further study on the prevention of diseases and nutrition intervention mechanism of anthocyanins.
anthocyanin,cardiovascular disease,tumour,diabetes,nutritional intervention
TS 201
A
1673—1689(2016)010—1009—11
2015-08-05
國(guó)家自然科學(xué)基金項(xiàng)目(31471588,31201340,31201402);教育部新世紀(jì)優(yōu)秀人才支持計(jì)劃項(xiàng)目,廣東省高等學(xué)校優(yōu)秀青年教師培養(yǎng)計(jì)劃項(xiàng)目(Yq2013024)。
白衛(wèi)濱(1978—),男,山東萊州人,工學(xué)博士,副研究員,主要從事食品營(yíng)養(yǎng)與安全研究。E-mail:baiweibin@163.com
*通信作者:孫建霞(1978—),女,山東招遠(yuǎn)人,副教授,主要從事果蔬加工與營(yíng)養(yǎng)研究。E-mai:ljxsun1220@163.com