周金慧 張文文 王欣然 張金振 金玥 楊樹(shù)鵬 趙文 陳蘭珍 問(wèn)亞琴 王鵬 黃京平 劉婷婷 李熠
(中國(guó)農(nóng)業(yè)科學(xué)院蜜蜂研究所農(nóng)業(yè)部蜂產(chǎn)品質(zhì)量監(jiān)督檢驗(yàn)測(cè)試中心,北京100093)
2016年國(guó)內(nèi)外蜂產(chǎn)品質(zhì)量安全研究進(jìn)展(續(xù))
周金慧 張文文 王欣然 張金振 金玥 楊樹(shù)鵬 趙文 陳蘭珍 問(wèn)亞琴 王鵬 黃京平 劉婷婷 李熠
(中國(guó)農(nóng)業(yè)科學(xué)院蜜蜂研究所農(nóng)業(yè)部蜂產(chǎn)品質(zhì)量監(jiān)督檢驗(yàn)測(cè)試中心,北京100093)
(續(xù)《中國(guó)蜂業(yè)》2017年第3期)
重金屬分析的樣品前處理方法和儀器分析方法也得到了一定的發(fā)展。通過(guò)合成一種螯合樹(shù)脂(MPAEMA-co-DVB-co-AMPS)作為吸附劑來(lái)提取蜂蜜樣品中Cd(II)、Co(II)、Cr(III)、Cu(II)、Fe(III)、Mn(II)、Pb(II)、和Zn (II)離子,然后利用原子熒光光譜法定量分析,檢測(cè)限范圍為0.9~2.2 ng/ml[27]。微波消解-四級(jí)桿-電感耦合等離子體質(zhì)譜也被應(yīng)用于蜂蜜和蜂花粉中Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Lu、Yb、As、Bi、Cd、Pb、Se和In含量分析,通過(guò)調(diào)整四級(jí)桿和質(zhì)譜的參數(shù)能夠極大地減少蜂蜜和蜂花粉基質(zhì)影響,提高準(zhǔn)確度和靈敏度[28]。
蜂蜜主要成分為糖類物質(zhì),包括果糖和葡萄糖在內(nèi)的所有的糖類物質(zhì)占80%以上,在高糖的環(huán)境下微生物很難存活,但是研究顯示芽孢桿菌因?yàn)槠淠褪艿难挎唧w的存在而廣泛存在于蜂蜜中。基于MALDITOF-MS質(zhì)譜技術(shù)對(duì)蜂蜜中芽孢桿菌的鑒定與分型顯示44株芽孢桿菌中鑒定出蠟樣芽孢桿菌 (B.cereus)31株,短小芽孢桿菌 (B.pumilus)5株,枯草芽孢桿菌(B. subtilis)3株,地衣芽孢桿菌(B.licheniformis)2株,炭疽芽孢桿菌 (B.anthracis)1株,土壤短芽孢桿菌(Brevibacillus agri.)2株。通過(guò)多次重復(fù)試驗(yàn),表明從同一份樣品或同一品牌蜂蜜樣品中能穩(wěn)定分離到芽孢桿菌,獲得的蛋白指紋圖譜具有極好的穩(wěn)定性[29]。
2.3 溯源分析
蜂產(chǎn)品尤其是蜂蜜的溯源分析是近年來(lái)研究的熱點(diǎn),其研究主要是基于蜂產(chǎn)品理化性質(zhì)、礦物質(zhì)元素以及黃酮類、酚酸類、氨基酸和芳香類等內(nèi)源性活性組分的靶標(biāo)和非靶標(biāo)數(shù)據(jù)統(tǒng)計(jì)分析構(gòu)建模型,使之可視化的分類。
基于礦物元素含量可進(jìn)行蜂蜜蜜源和產(chǎn)地溯源研究,采用全譜直讀電感耦合等離子體原子發(fā)射光譜法測(cè)定蜜樣礦物元素含量,引進(jìn)啞變量回歸和校正模型,從而建立了蜂蜜產(chǎn)地、蜜源雙目標(biāo)溯源分析方法[30]。基于蜂蜜中的氨基酸種類和含量的不同,應(yīng)用甲醛和乙酰丙酮與蜂蜜中氨基酸發(fā)生熒光衍生反應(yīng)對(duì)源自不同花源的蜂蜜進(jìn)行種類辨別研究。對(duì)衍生后的蜂蜜進(jìn)行三維熒光檢測(cè),每個(gè)蜂蜜樣品經(jīng)檢測(cè)后得到一個(gè)三維熒光光譜矩陣數(shù)據(jù),五種蜂蜜共150個(gè)樣品最后得到一個(gè)三維立方數(shù)據(jù)。將檢測(cè)獲得的三維熒光數(shù)據(jù)結(jié)合多維主成分分析、自加權(quán)交替三線性分解法及多維偏最小二乘辨別分析等多維模式識(shí)別方法,進(jìn)行數(shù)據(jù)處理并獲取五種蜂蜜的識(shí)別信息。研究結(jié)果顯示,基于氨基酸熒光衍生的多維模式識(shí)別方法可以用于蜂蜜種類的識(shí)別研究[31]。曹煒等[32]基于高效液相色譜-電化學(xué)檢測(cè)技術(shù)建立一種新的蜂蜜花源鑒別方法,以采自中國(guó)不同地區(qū)的3種單花種蜂蜜為研究對(duì)象,構(gòu)建了3種單花種蜂蜜的液相色譜電化學(xué)檢測(cè)器指紋圖譜,提取圖譜共有峰面積信息并應(yīng)用主成分分析和系統(tǒng)聚類分析進(jìn)行蜂蜜花源分類,并對(duì)完全未參與建模的蜂蜜樣品進(jìn)行驗(yàn)證。此外世界各國(guó)的研究人員還分別利用蜂蜜中的理化指標(biāo)、特征組分尋找、內(nèi)源性組分結(jié)合多種數(shù)據(jù)分析手段對(duì)來(lái)自不同國(guó)家的不同蜜源植物的蜂蜜進(jìn)行了鑒別[33-46]。
先進(jìn)的樣品前處理技術(shù)和儀器分析技術(shù)也用于蜂產(chǎn)品的溯源分析。以鉛筆鉛為機(jī)體的鉍膜電極結(jié)合化學(xué)計(jì)量學(xué)方法,通過(guò)優(yōu)化方波伏安法的參數(shù),使用Behnken設(shè)計(jì)與期望函數(shù)相結(jié)合,不同的算法如不對(duì)稱最小使用正方形(AsLS)和相關(guān)優(yōu)化變形(COW)來(lái)預(yù)處理原始像數(shù)據(jù),偏最小二乘法(PLS)和人工神經(jīng)元網(wǎng)絡(luò)(ANN)用來(lái)預(yù)測(cè)樣品中四種金屬的含量。該方法最終用來(lái)鑒別阿根廷不同產(chǎn)地的蜂膠產(chǎn)品[47]。高效液相薄層色譜-熒光檢測(cè)器和實(shí)時(shí)直接分析質(zhì)譜指紋圖譜也用于法國(guó)蜂膠的鑒別,獲得的指紋圖譜數(shù)據(jù)利用模式識(shí)別技術(shù)對(duì)大量數(shù)據(jù)進(jìn)行分析,同時(shí)酚酸類化合物咖啡酸、對(duì)香豆酸、柯茵、短葉松素、3-O-乙酰基短葉松素、高良姜素、莰菲醇和松屬素作為鑒別法國(guó)蜂膠的特征標(biāo)志物[48]。
大氣壓分析探針質(zhì)譜是近兩年出現(xiàn)的又一種環(huán)境大氣壓離子化質(zhì)譜分析技術(shù),該技術(shù)能夠快速、簡(jiǎn)便分析固體、液體、組織或材料樣品中揮發(fā)性和半揮發(fā)性化合物而無(wú)需樣品制備和分離。探針插放于商品化的質(zhì)譜離子源的源體內(nèi),熱的氮?dú)饬魇箻悠房焖倜摳街量諝庵校?jīng)電暈放電離子化產(chǎn)生質(zhì)子化(正離子模式)或去質(zhì)子化(負(fù)離子模式)離子,隨后進(jìn)行質(zhì)譜或多級(jí)質(zhì)譜定性、定量分析。不干擾同一源體上的電噴霧(ESI)源或大氣壓化學(xué)電離源(APCI)源的運(yùn)行,互為補(bǔ)充,且切換迅速方便。該離子化方式尤其適用于高端液質(zhì)平臺(tái),充分展示其多級(jí)質(zhì)譜的選擇性碰撞碎裂能力,進(jìn)行快速鑒定和高靈敏度定量,以及精確質(zhì)量分析能力,實(shí)現(xiàn)復(fù)雜混合物中化合物的快速鑒定和定量分析。該技術(shù)在蜂花粉鑒別種也得到了應(yīng)用,蜂花粉磨碎后借助于微量的水附著于玻璃毛細(xì)管上,然后涂于探針,通過(guò)提高氮?dú)獾臏囟仁够ǚ壑械奈镔|(zhì)至離子源附近,在低碰撞能量條件下的質(zhì)譜中分析,從而通過(guò)分析黃酮類物質(zhì)鑒別花粉的蜜源植物和產(chǎn)地[49]。
2.4 摻假鑒別
目前,世界各國(guó)的蜂產(chǎn)品摻假主要集中于蜂蜜和蜂膠兩個(gè)產(chǎn)品。我國(guó)蜂蜜國(guó)家標(biāo)準(zhǔn)規(guī)定,不得在蜂蜜中添加或混入任何淀粉類、糖類或代糖類物質(zhì)。近年來(lái),國(guó)內(nèi)和國(guó)際市場(chǎng)對(duì)蜂蜜的需求量不斷增加,在巨大經(jīng)濟(jì)利益的驅(qū)使下不法分子在蜂蜜中加入其他低品質(zhì)的蜂蜜以次充好,或者摻入糖漿等甜味物質(zhì)以假亂真,影響了蜂蜜產(chǎn)品的市場(chǎng)秩序和我國(guó)蜂蜜產(chǎn)品的出口貿(mào)易。而蜂膠被定義為工蜂采集植物樹(shù)脂等分泌物與其上顎腺、蠟腺等分泌物混合形成的膠粘性物質(zhì)。由于其獨(dú)特而廣泛的活性作用,因此市場(chǎng)需求量很大,進(jìn)而也就出現(xiàn)了楊樹(shù)膠混入蜂膠中的造假問(wèn)題。蜂膠來(lái)源于植物樹(shù)脂,尤其是楊樹(shù)蜂膠主要來(lái)源于楊屬植物,因此為鑒別蜂膠和楊樹(shù)膠帶來(lái)了難度。
蜜蜂在采集楊屬植物樹(shù)脂以及蜂巢內(nèi)傳遞這些樹(shù)脂加工成蜂膠的過(guò)程中加入了其腺體分泌的β-葡萄糖苷酶等,將樹(shù)脂中所含有的水楊苷水解,但在楊樹(shù)膠加工過(guò)程中水楊苷能穩(wěn)定存在,因而水楊苷是區(qū)分蜂膠與楊樹(shù)膠的有效指標(biāo)。基于液相色譜-線性離子阱-靜電場(chǎng)軌道阱高分辨質(zhì)譜快速測(cè)定蜂膠中楊樹(shù)膠指標(biāo)性成分水楊苷含量的方法,能夠根據(jù)精確的母離子和子離子質(zhì)荷比進(jìn)行定性和確證,以判斷蜂膠中是否摻雜楊樹(shù)膠[50]。
根據(jù)AOAC 998.12的描述,蜂蜜中C-4糖含量>7%被認(rèn)定為摻假蜂蜜。但是,按照該方法測(cè)定C-4糖含量<0%的蜂蜜樣品真實(shí)性的研究較少。使用元素分析儀和液相色譜法電感耦合同位素質(zhì)譜分析蜂蜜及其提取的蛋白質(zhì)和糖(蔗糖,葡萄糖和果糖)中δ13C值,δ2H和δ18O值,以及蔗糖和還原糖含量,進(jìn)而研究C-4糖含量<0%的蜂蜜樣品的真實(shí)性。研究結(jié)果顯示,與0<C-4糖含量(%)<7相比,蜂蜜在-7<C-4糖含量(%)<0時(shí)被鑒定為不含C-4糖更加可靠。對(duì)于δ18O值,和其他的蜂蜜相比,C-4糖含量(%)<-7組值較低為16.30‰,這可以作為一個(gè)鑒別摻假蜂蜜有用參數(shù)。該項(xiàng)研究表明,使用同位素組分和系統(tǒng)偏差能夠可靠的檢測(cè)C-4糖含量<0%的蜂蜜樣品是否摻假[51]。除了添加糖漿之外,一些不法商販也在蜂蜜中添加防腐劑、甜味劑、色素和香精等外源性添加劑,陳麗娟等[52]將蜂蜜樣品采用甲醇-水溶液提取苯甲酸、山梨酸、安賽蜜、糖精鈉,以乙酸銨溶液和甲醇為流動(dòng)相梯度洗脫,通過(guò)高分辨質(zhì)譜負(fù)離子掃描模式進(jìn)行定性,外標(biāo)法定量,有效考察苯甲酸、山梨酸、安賽蜜和糖精鈉在蜂蜜中添加情況。
2016年已經(jīng)正式出版的文獻(xiàn)主要側(cè)重于蜂產(chǎn)品中待測(cè)物的快速、簡(jiǎn)單的樣品前處理技術(shù)的改進(jìn)和建立高分辨質(zhì)譜技術(shù)的應(yīng)用,進(jìn)而提高待測(cè)物免受基質(zhì)干擾的能力,提高待測(cè)物的靈敏度和準(zhǔn)確度。尤其是電化學(xué)技術(shù)、新材料技術(shù)、免疫膠體金技術(shù)和利用分析化學(xué)技術(shù)在原有質(zhì)譜基礎(chǔ)上的改進(jìn)相結(jié)合的應(yīng)用。
本文僅列舉了部分具有代表性的相關(guān)文獻(xiàn),以點(diǎn)帶面闡述2016年本領(lǐng)域內(nèi)的研究概況,希望對(duì)以后研究?jī)?nèi)容的范圍和深度都有所幫助。
[1]鄧敏,方小偉,郭夏麗,等.基于中性解吸-電噴霧萃取電離質(zhì)譜直接檢測(cè)蜂蜜中的四環(huán)素 [J].高等學(xué)校化學(xué)學(xué)報(bào),2016,(08): 1430-1434.
[2]于騰輝,劉星星,鄧敏,等.中性解吸電噴霧萃取電離質(zhì)譜法直接檢測(cè)蜂蜜中的敵敵畏[J].分析化學(xué),2016,(09):1432-1436.
[3]Wang Huazi,Hu Lu,Li Wanzhen,et al.A rapid and simple pretreatment method for benzoylurea insecticides in honey samples using in-syringe dispersive liquid–liquid microextraction based on the direct solidification of ionic liquids[J].Journal of Chromatography A, 2016,1471:60-67.
[4]Mousavi Mir Michael,Nemati Mahboob,Alizadeh Nabili Ali Akbar, et al.Application ofdispersive liquid–liquid microextraction followed by gas chromatography/mass spectrometry as effective tool for trace analysis of organochlorine pesticide residues in honey samples[J]. Journal ofthe Iranian Chemical Society,2016,13(12):2211-2218.
[5]Shamsipur Mojtaba,Yazdanfar Najmeh,Ghambarian Mahnaz. Combination of solid-phase extraction with dispersive liquid–liquid microextraction followed by GC MS for determination of pesticide residues from water,milk,honey and fruit juice[J].Food Chemistry, 2016,204:289-297.
[6]Mousavi Mir Michaeel,Arefhosseini Seyedrafie,Nabili Ali Akbar Alizadeh,et al.Development of an ultrasound‐assisted emulsification microextraction method for the determination of chlorpyrifos and organochlorine pesticide residues in honey samples using gas chromatography with mass spectrometry [J].Journal of separation science,2016.
[7]Su Rui,Li Xueyuan,Liu Wenlong,et al.Headspace Microextraction of Sulfonamides from Honey by Hollow Fibers Coupled with Ultrasonic Nebulization [J].Journal of agricultural and food chem-istry,2016,64(7):1627-1634.
[8]Yue Mei-E,Li Qian,Xu Jie,Jiang Ting-Fu.Salt De-Emulsification Dispersive Liquid-Liquid Microextraction and Back-Extraction Combined with Sweeping Micellar Electrokinetic Capillary Chromatography for Detection of Triazine Herbicides in Honey[J]. Food Analytical Methods,2016,9(3):699-705.
[9]Asadi Mohammad,Shabani Haji,Mohammad Ali,et al.Simultaneous extraction and quantification of albendazole and triclabendazole using vortex assisted hollow fiber liquid phase microextraction combined with high performance liquid chromatography[J].Journal of separation science,2016.
[10]Shirani Mahboube,Haddadi Hedayat,Rezaee Mohammad,et al.Solid-Phase Extraction Combined with Dispersive Liquid–Liquid Microextraction for the Simultaneous Determination of Deltamethrin and Permethrin in Honey by Gas Chromatography–Mass Spectrometry[J].Food Analytical Methods,2016:1-8.
[11]Liu Hsiang Yu,Lin Shu Ling,Fuh Ming Ren.Determination of chloramphenicol,thiamphenicol and florfenicol in milk and honey using modified QuEChERS extraction coupled with polymeric monolith-based capillary liquid chromatography tandem mass spectrometry[J].Talanta,2016,150:233-239.
[12]Shendy Amr H,Al-Ghobashy Medhat A,Alla Sohair a Gad, et al.Development and validation of a modified QuEChERS protocol coupled to LC MS/MS for simultaneous determination of multi-class antibiotic residues in honey [J].Food chemistry,2016,190:982-989.
[13]Calatayud-Vernich Pau,Calatayud Fernando,Simó Enrique, et al.Efficiency of QuEChERS approach for determining 52 pesticide residues in honey and honey bees [J].MethodsX,2016,3: 452-458.
[14]Tette Patrícia Amaral Souza,Da Silva Oliveira Fabiano Aurélio,Pereira Elba Nathália Corrêa,et al.Multiclass method for pesticides quantification in honey by means of modified QuEChERS and UHPLC–MS/MS[J].Food Chemistry,2016,211:130-139.
[15]Chen Yanni,Kong Dezhao,Liu Liqiang,et al.Development of an ELISA and Immunochromatographic Assay for Tetracycline, Oxytetracycline,and Chlortetracycline Residues in Milk and Honey Based on the Class-Specific Monoclonal Antibody [J].Food Analytical Methods,2016,9(4):905-914.
[16]Zhou Tianyu,Hou Juan,Yuan Ding,et al.Chen Yanhua,Ding Lan.Determination of triazine herbicides from honey samples based on hydrophilic molecularly imprinted resins followed by high performance liquid chromatography-tandem mass spectrometry [J].RSC Advances,2016,6(101):98663-98673.
[17]Bougrini Madiha,Florea Anca,Cristea Cecilia,et al.El Bari Nezha,Jaffrezic-Renault Nicole.Development of a novel sensitive molecularly imprinted polymer sensor based on electropolymerization of a microporous-metal-organic framework for tetracycline detection in honey[J].Food Control,2016,59:424-429.
[18]Krepper Gabriela,Pierini Gastón D,Pistonesi Marcelo F,et al.“In-situ”antimony film electrode for the determination of tetracyclines in Argentinean honey samples[J].Sensors and Actuators B: Chemical,2017,241:560-566.
[19]Zheng Wenjing,Yan Fei,Su Bin.Electrochemical determination of chloramphenicol in milk and honey using vertically ordered silica mesochannels and surfactant micelles as the extraction and anti-fouling element [J].Journal of Electroanalytical Chemistry, 2016.
[20]祝子銅,雷美康,彭芳,等.快速溶劑萃取-凝膠滲透色譜凈化-LC/MS/MS結(jié)合測(cè)定蜂花粉中硝基咪唑類藥物 [J].藥物分析雜志,2016,(03):522-529.
[21]朱文君,張曉燕,吳斌,等蜂膠中四環(huán)素族藥物殘留檢測(cè)方法研究[J].食品研究與開(kāi)發(fā),2016,37(3):135-138.
[22]鄭明,江明,胡衛(wèi)南,等.原子吸收光譜法和原子熒光光譜法測(cè)定蜂產(chǎn)品中的重金屬殘留量 [J].中國(guó)現(xiàn)代應(yīng)用藥學(xué),2016, (10):1297-1300.
[23]邢華銘.ICP-MS測(cè)定椴樹(shù)蜜中鋁元素 [J].自然科學(xué):文摘版:00245-00245.
[24]金鈴和,陳輝,范春林,等.微波消解-電感耦合等離子體質(zhì)譜法同時(shí)測(cè)定椴樹(shù)蜂蜜中23種元素 [J].食品工業(yè)科技,2016, 37(1).
[25]陜紅,孫寶利,黃金麗,等.DRC-ICP-MS測(cè)定蜂王漿中硒的方法研究[J].分析測(cè)試學(xué)報(bào),2016,(9):1191-1194.
[26]張劍,王禎旭,李秀梅.微波消解-電感耦合等離子質(zhì)譜法測(cè)定蜂膠制品中5種重金屬元素的含量[J].中國(guó)藥業(yè),2016,25 (5):52-54.
[27]Da ba Teslima,Sa mac erife,ankaya Nevin,et al.A new synthesis,characterization and application chelating resin for determination of some trace metals in honey samples by FAAS [J].Food chemistry,2016,203:283-291.
[28]De Oliveira Fernanda Ataide,De Abreu Adriana Trópia,De Oliveira Nascimento Nathália,et al.Evaluation of matrix effect on the determination of rare earth elements and As,Bi,Cd,Pb,Se and In in honey and pollen of native Brazilian bees (Tetragonisca angustula–Jataí)by Q-ICP-MS[J].Talanta,2017,162:488-494.
[29]宗凱,周莉質(zhì),李云飛,等.基于MALDI-TOF-MS質(zhì)譜技術(shù)對(duì)蜂蜜中芽孢桿菌的鑒定與分型 [J].安徽農(nóng)業(yè)科學(xué),2016,(08): 107-109.
[30]何忠萍,文勇立,王建文,等.蜂蜜產(chǎn)地與蜜源礦物元素溯源方法的建立[J].食品研究與開(kāi)發(fā),2016,(05):20-25.
[31]胡樂(lè)乾,尹春玲,王歡,等.氨基酸衍生三維熒光法結(jié)合多維模式識(shí)別用于蜂蜜種類辨別研究 [J].光譜學(xué)與光譜分析, 2016,36(7):2148-2154.
[32]賀瓊,何亮亮,康予馨,等.基于高效液相-電化學(xué)檢測(cè)指紋圖譜鑒別3種單花種蜂蜜花源的新方法[J].食品科學(xué):1-12.
[33]Flanjak Ivana,Kenjeri Daniela,Bubalo Dragan,et al.Characterisation of selected Croatian honey types based on the combination of antioxidant capacity,quality parameters,and chemometrics [J].European Food Research and Technology,2016,242(4):467-475.
[34]Nousias Pericles,Karabagias Ioannis K,Kontakos Stavros,et al.Characterization and Differentiation of Greek Commercial Thyme Honeys According to Geographical Origin Based on Quality and some Bioactivity Parameters Using Chemometrics [J].Journal of Food Processing and Preservation,2016.
[35]Atanassova Juliana,Pavlova Dolja,Lazarova Maria,et al.Characteristics of Honey from Serpentine Area in the Eastern Rhodopes Mt.,Bulgaria[J].Biological trace element research,2016: 1-12.
[36]Uckun Oksan,Selli Serkan.Characterization of key aroma compounds in a representative aromatic extracts from citrus and astragalus honeys based on aroma extract dilution analyses[J].Journal of Food Measurement and Characterization:1-11.
[37]Tahir Haroon Elrasheid,Xiaobo Zou,Xiaowei Huang,et al. Discrimination of honeys using colorimetric sensor arrays,sensory analysis and gas chromatography techniques [J].Food chemistry, 2016,206:37-43.
[38]Quinto Maurizio,Miedico Oto,Spadaccino Giuseppina,et al. Characterization,chemometric evaluation,and human health-related aspects of essential and toxic elements in Italian honey samples by inductively coupled plasma mass spectrometry [J].Environmental Science and Pollution Research,2016,23(24):25374-25384.
[39]Roshan Abdul-Rahman A,Gad Haidy A,El-Ahmady Sherweit H,et al.Characterization and Discrimination of the Floral Origin of Sidr Honey by Physicochemical Data Combined with Multivariate Analysis[J].Food Analytical Methods,2016:1-10.
[40]Jang Eun Sook,Kim In Suk,Lee Eun Jin,et al.Characterization of Traditional Korean Unifloral Honey Based on the Mono-, Di-,and Trisaccharides [J].Korean Journal of Food Science and Technology,2016,48(1):1-8.
[41]Popescu Raluca,Geana Elisabeta Irina,Dinca Oana Romina, et al.Characterization of the quality and floral origin of Romanian honey[J].Analytical Letters,2016,49(3):411-422.
[42]Kadri Samir Moura,Zaluski Rodrigo,Lima Giuseppina Pace Pereira,et al.Characterization of Coffea arabica monofloral honey from Espírito Santo,Brazil[J].Food chemistry,2016,203:252-257.
[43]Bougrini Madiha,Tahri Khalid,Saidi Tarik,et al.Classification of honey according to geographical and botanical origins and detection of its adulteration using voltammetric electronic tongue[J]. Food Analytical Methods,2016:1-13.
[44]Nayik Gulzar Ahmad,Suhag Yogita,Majid Ishrat,et al.Discrimination of high altitude Indian honey by chemometric approach according to their antioxidant properties and macro minerals[J]. Journal of the Saudi Society of Agricultural Sciences,2016.
[45]Li Li Jun,Hong Peng,Chen Feng,et al.Characterization of the aldehydes and their transformations induced by UV irradiation and air exposure of white Guanxi honey pummelo (Citrus grandis (L.)Osbeck)essential oil[J].Journal of agricultural and food chemistry,2016.
[46]Kaygusuz Hakan,Tezcan Filiz,Erim F Bedia,et al.Characterization of Anatolian honeys based on minerals,bioactive components and principal component analysis [J].LWT-Food Science and Technology,2016,68:273-279.
[47]Pierini Gastón D,Pistonesi Marcelo F,Di Nezio María S,et al. A pencil-lead bismuth film electrode and chemometric tools for simultaneous determination of heavy metals in propolis samples[J]. Microchemical Journal,2016,125:266-272.
[48]Chasset Thibaut,H be Tim T,Ristivojevic Petar,et al.Profiling and classification of French propolis by combined multivariate data analysis of planar chromatograms and scanning direct analysis in real time mass spectra [J].Journal of Chromatography A,2016, 1465:197-204.
[49]Xiao Xiaoyin,Miller Lance L,Parchert Kylea J,et al.Atmospheric solids analysis probe mass spectrometry for the rapid identification of pollens and semi‐quantification of flavonoid fingerprints [J].Rapid Communications in Mass Spectrometry,2016,30(13): 1639-1646.
[50]趙曉亞,付曉芳,李晶,等.高效液相色譜-線性離子阱-靜電場(chǎng)軌道阱高分辨質(zhì)譜測(cè)定楊樹(shù)膠的指標(biāo)性成分水楊苷 [J].分析測(cè)試學(xué)報(bào),2016,(03):342-346.
[51]Dong Hao,Luo Donghui,Xian Yanping,et al.Adulteration I-dentification of Commercial Honey with the C-4 Sugar Content of Negative Values by an Elemental Analyzer and Liquid Chromatography Coupled to Isotope Ratio Mass Spectroscopy[J].Journal of agricultural and food chemistry,2016,64(16):3258-3265.
[52]陳麗娟,費(fèi)曉慶,譚夢(mèng)茹,等.超高效液相色譜-高分辨質(zhì)譜法測(cè)定蜂蜜中的苯甲酸、山梨酸、安賽蜜與糖精鈉[J].分析測(cè)試學(xué)報(bào),2016,(09):1142-1146.