劉丹丹,周雪飛
(同濟大學 長江水環境教育部重點實驗室,上海 200092)

能量活化主要通過外界提供足夠的能量促使過硫酸鹽中的化學鍵發生斷裂,從而形成硫酸自由基,其反應過程可用式(1)和式(2)表示:
(1)
(2)
目前使用最多的是高溫和紫外照射兩種方法。
相對于使用高溫或UV 活化過硫酸鹽,使用過渡金屬活化具有高效、低成本的優點,越來越多的應用于實踐中。在不同價態的過渡金屬離子的催化下,PMS和PS通過下列方程式生成硫酸自由基和其他的一些物質:
(3)
(4)
(5)
(6)
(7)
(8)
金屬離子與氧化劑的反應原理上主要是金屬離子與氧化劑之間的電子轉移過程。Anipsitakis等研究發現,Co(Ⅱ)和Ru(Ⅲ)活化KHSO5效果最好,Ag(Ⅰ)活化K2S2O8效果最好,而Fe(Ⅱ)、Fe(Ⅲ)活化H2O2效果最好[2]。



(9)
(10)

(11)

(12)

(13)
(14)

(15)

(16)
(17)
(18)

(19)

(20)

(21)

(22)
(23)
(24)
同樣的,人們發現在基于硫酸自由基的高級氧化體系中,通常會發生式(25)、(26)、(27)、(28)和(29)的反應過程。
(25)
(26)
(28)
(29)



(28)
(29)
(30)
基于過硫酸鹽的高級氧化技術在環境領域取到了快速的發展,人們越來越關注其在實際應用中環境基質的影響,相信隨著研究的不斷深入,更準確、更全面的過硫酸鹽降解機理將會得到有效的解讀。與其他高級氧化體系相比,基于過硫酸鹽的高級氧化技術在實際應用中還存在著效率不高、使用范圍有限等問題,如何根據硫酸自由基的特異性和其與環境基質物質的反應機理來提高過硫酸鹽的去除有機物的效率是今后研究的一個重要方向。
[1]Neta P., Huie R.E., Ross A. B. Rate contants for reaction of inorganic radicals in aqueous solution[J]. Journal of Physical and Chemical Referrence Data, 1988, 17(3):1027~1284.
[2]Anipsitakisan G., Dionysiosd D. Radical Generation by the Interaction of Transition Metals with Common Oxidants [J]. Environmental Science and Technology, 2004, 38(13):3705~3712.
[3]Nfodzo P., Choi H. Sulfate radicals destroy pharmaceuticals and personal care products[J]. Environmental Engineering Science, 2011, 28(8): 605~609.
[4]Liang, C., Z.-S. Wang, and N. Mohanty. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 °C[J]. Science of The Total Environment, 2006, 370(2-3): 271~277.
[5]Rickman K.A., Stephen P. M. Kinetics and mechanisms of sulfate radical oxidation of β-lactam antibiotics in water [J]. Chemosphere, 2010 (81): 359~365.
[6]Fang, G.D., et al. Transformation of polychlorinated biphenyls by persulfate at ambient temperature[J]. Chemosphere, 2013, 90(5): 1573~1580.
[7]Lutze H. V., Kerlin N., Schmidt T.C. Sulfate radical-based water treatment in presence of chloride: Formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and in?uence of bicarbonate[J]. Water Research, 2015, 72: 349~360.
[8]Fang, G.D., et al. Sulfate radical-based degradation of polychlorinated biphenyls: Effects of chloride ion and reaction kinetics[J]. Journal of Hazardous Materials,2012. 227-228(0): 394~401.
[9]Rao Y.F., Qu L., Yang H. S., et al. Degradation of carbamazepine by Fe(II)-activated persulfate process[J]. Journal of Hazardous Material, 2014, 268(6):23~32.
[10]Bennedsen, L.R., J. Muff, and E.G. S?gaard. Influence of chloride and carbonates on the reactivity of activated persulfate[J]. Chemosphere, 2012, 86(11): 1092~1097.
[11]Yang, Y., et al. Comparison of Halide Impacts on the Efficiency of Contaminant Degradation by Sulfate and Hydroxyl Radical-Based Advanced Oxidation Processes (AOPs)[J]. Environmental science and technology, 2014, 48(4): 2344~2351.
[12]Luca A.D., He X.X., Dionysios D. D. Effects of bromide on the degradation of organic contaminants with UV and Fe2+activated persulfate[J]. Chemical Engineering Journal, 2016.
[13]Fang J. Y., and Shang C. Bromate Formation from Bromide Oxidation by the UV/Persulfate Process[J]. Environmental science and technology, 2012, 46(16): 8976~8983.
[14]J. Lu, J. Wu, Y. Ji, D. Kong. Transformation of bromide in thermo activated persulfate oxidation processes[J]. Water Research, 2015(78):1~8.
[15]Cavalcante, R.P., Dantas, R.F., Wender, H. Photocatalytic treatment of metoprolol with B-doped TiO2: effect of water matrix, toxicological evaluation and identification of intermediates[J]. Applied Catalysis B: Environmental, 2015,176, 173-182.
[16]Choi, J., Lee, H., Choi, Y., Kim, et al. 2014. Heterogeneous photocatalytic treatment of pharmaceutical micropollutants: effects of waste-water ef?uent matrix and catalyst modifications[J]. Applied Catalysis B: Environmental, 2014, 147(8): 8-16.
[17]Wang, X.H., Lin, A.Y.C. Is the phototransformation of pharmaceuticals a natural puri?cation process that decreases ecological and human health risks[J]. Environmental Pollution, 2014, 186: 203-215.
[18]Brezonik, P.L., Fulkerson-Brekken, Nitrate-induced photolysis in natural waters: controls on concentrations of hydroxyl radical photo-intermediates by natural scavenging agents[J]. Environmental Science and Technology. 1998, 32 (19):3004~3010.
[19]Wang, X.H., Lin, A.Y.C. Phototransformation of cephalosporin antibiotics in an aqueous environment results in higher toxicity[J]. Environmental Science and Technology, 2012, 46 (22), 2417~2426.
[20]R. Zhang, P. Sun, T.H. Boyer, L. Zhao, C.-H. Huang, Degradation of pharmaceuticals and metabolite in synthetic human urine by UV, UV/H2O2, and UV/PDS[J]. Environmental Science and Technology, 2015, 49(5): 3056~3066.
[21]R.A. Larson, R.G. Zepp, Reactivity of the carbonate radical with aniline derivatives[J]. Environmental toxicology and chemistry, 1988, 7(4): 265~274.
[22]Qian Y J, Xin G, Zhang Y L, et al. Per?uorooctanoic Acid Degradation Using UV?Persulfate Process: Modeling of the Degradation and Chlorate Formation[J]. Environmental Science and Technology, 2016, 50(2): 772~781.
[23]Y. Liu, X. He, X. Duan, Y. Fu, D. Fatta-Kassinos, D.D. Dionysiou. Significant role of UV and carbonate radical on the degradation of oxytetracycline in UV-AOPs: Kinetics and mechanism[J]. Water Research, 2016, 95: 195~204.
[24]Y. Liu, X. He, X. Duan, Y. Fu, D.D. Dionysiou. Photochemical degradation of oxytetracycline: Influence of pH and role of carbonate radical[J]. Chemical Engineering Journal , 2015,276:113~121.
[25]J. Huang, S.A. Mabury. A new method for measuring carbonate radical reactivity toward pesticides[J]. Environmental toxicology and chemistry, 2000,9(19): 1501~1507.
[26]S.-n. Chen, M.Z. Hoffman, Rate constants for the reaction of the carbonate radical with compounds of biochemical interest in neutral aqueous solution[J]. Radiation research, 1973, 56(1): 40~47.
[27]R. Zhang, P. Sun, T.H. Boyer, L. Zhao, C.-H. Huang. Degradation of pharmaceuticals and metabolite in synthetic human urine by UV, UV/H2O2, and UV/PDS[J]. Environmental Science and Technology, 2015, 49(5) 3056~3066.
[28]Webber W. L., Ming-Hao Hsu, Angela Yu-Chen Lin. The role of bicarbonate anions in methotrexate degradation via UV/TiO2: Mechanisms, reactivity and increased toxicity[J]. Water Research, 2017,112:157~166.
[29]Luo C.W., Jiang J., Ma J., et al. Oxidation of the odorous compound 2,4,6-trichloroanisole by UV activated persulfate: Kinetics, products, and pathways [J]. Water Research, 2016, 96: 12~21.
[30]Paul Westerhoff, Stephen P. Mezyk, William J. Cooper, et al. Electron Pulse Radiolysis Determination of Hydroxyl Radical Rate Constants with Suwannee River Fulvic Acid and Othe Dissolved Organic Matter Isolates[J]. Environmental Science and Technology, 2007, 41(13): 4640~4646.
[31]Fang, G.D.,Gao J., Dionysios D. D., et al. Activation of Persulfate by Quinones: Free Radical Reactions and Implication for the Degradation of PCBs[J]. Environmental Science and Technology, 2013, 47(9), 4605~4611.
[32]Mushtaque A, Amy L T, Richard J W. Mechanism of Persulfate Activation by Phenols[J]. Environmental Science and Technology, 2013, 47(11), 5864~5871.