馬俊芳
(天津市中心婦產科醫院,天津,300100)
冷凍胚胎移植的臨床應用效果評價
馬俊芳
(天津市中心婦產科醫院,天津,300100)
體外受精-胚胎移植治療不孕癥的過程中,相比新鮮胚胎移植,冷凍胚胎移植(FET)移植成功率類似,但是異位妊娠發生率、圍產期并發癥發生率更低,新生兒結局較好。
輔助生殖技術;冷凍胚胎移植;新鮮胚胎移植
近年來隨著胚胎凍存技術的不斷提高,體外受精-胚胎移植(IVF-ET)治療不孕癥的過程中,冷凍胚胎移植(FET )的應用不斷增多[1,2]。2006年歐洲數據顯示[3],FET占全部輔助生殖(ART)周期的20%,在瑞典、德國及西班牙等國家,FET周期已經超過了新鮮胚胎移植周期,美國同期數據表明[4],FET周期占全部ART周期的16.0%。ART協會數據顯示[5],2006~2012年FET周期數增加了82.5%,而新鮮周期僅增加了3.1%。最近研究結果也顯示,相比新鮮胚胎移植,FET移植成功率類似,但異位妊娠發生率、圍產期并發癥發生率更低,新生兒結局較好。現綜述如下。
美國疾控中心(CDC)統計了1997~2011年美國生殖醫學中心新鮮胚胎移植和FET的成功率[6],結果顯示在此時間段內,各個年齡組新鮮胚胎移植及FET成功率都得到了提高,例如在年齡<35歲組,新鮮周期的活產率由31%升高至40%,FET的活產率由21%升高至39%。FET周期的成功率并不低于新鮮移植。有學者認為,在目前比較新鮮胚胎移植與FET成功率的大多數研究中,較好的胚胎都是在新鮮胚胎移植周期進行移植,而在這些研究中,新鮮胚胎移植周期與FET的成功率并無差異[7]。有研究表明,在卵巢過度刺激綜合征(OHSS)高風險患者中行全胚凍存后FET有更高的臨床妊娠率[8]。考慮到行FET的多是質量相對不好的胚胎,如果用質量最好的胚胎行FET,可能成功率會更高。
最近一項包括三個隨機對照實驗(RCTs)、633名參與者的Meta分析比較了全胚凍存FET組及新鮮胚胎移植組的臨床妊娠率(CPR)、持續妊娠率及流產率[9],發現全胚凍組CPR 、持續妊娠率較新鮮移植組高,兩組流產率無統計學差異。三個RCTs得出了相似的結論,而且不論是卵裂期胚胎移植[10]還是囊胚移植[11,12],均不會對結論產生影響。但我們仍需嚴謹地解釋上述結論。上述RCTs中研究對象相對年輕(年齡27~33歲),研究結果是否適用于年老者及預后不佳的患者尚需進一步研究。有研究認為,在年齡>35歲預后較差患者中也能得出相似的結論[13]。遺憾的是,上述三個RCTs均未報道有關圍產期結局的數據。值得注意的是,在上述三個RCTs中,所有患者均采用激素替代周期解凍,有研究[14]表明,激素的干預可能會對子宮內膜容受性產生不利影響,從而影響成功率,由此我們可以推測,全胚凍后行自然周期FET成功率可能會更高。
IVF-ET是異位妊娠的危險因素之一,IVF-ET后異位妊娠的發病率為2%~5%[15],遠高于自然妊娠的1%~2%[16],但體外受精(IVF)后異位妊娠高發生率的機制并不明確。有學者[17]認為,控制性超促排卵本身及之后增大的卵巢刺激腹膜以及取卵等都會加強子宮的收縮,從而導致異位妊娠的發生。既往研究表明,控制性超促排卵后內分泌環境的改變可能是新鮮周期異位妊娠發生率較高的原因[18]。目前,大量研究表明 FET較新鮮胚胎移植異位妊娠的發生率較低[19]。尤其是對于合并有其他高風險或不利條件的患者,例如OHSS高風險患者。在這類患者中應用全胚凍存FET,發生OHSS及異位妊娠的風險較低。目前尚無有效方法判斷哪些患者具有異位妊娠的高風險,雖然有學者[20]的研究發現,輸卵管因素不孕患者中異位妊娠發生率較高,但異位妊娠同樣也可以發生于非輸卵管因素不孕患者,因此將全胚凍FET常規應用于所有患者似乎是一個降低異位妊娠整體發生率的方法。
隨著ART應用的普及,其安全性問題得到了廣泛的關注。早在2004年有學者[21]就提出用新的度量標準,即BESST標準來衡量IVF結局,該指標強調了足月健康活產兒的出生這一不孕癥夫婦的最終關注點。基于這一理論,目前的研究表明,FET對于IVF患者及新生兒來說都是一種更為安全的選擇。
一項澳大利亞的研究以自然妊娠為對照組,研究了FET出生缺陷及新鮮移植出生缺陷發生率[22],結果發現,與自然妊娠相比,新鮮胚胎移植后出生缺陷發生率明顯高,而FET組與自然妊娠組相比出生缺陷發生率無差異。來自澳大利亞的另一人口學研究發現[23],新鮮胚胎移植與自然妊娠相比,芽生出生缺陷發生率明顯較高,而FET組與自然妊娠組相比無差異。
另外,一項Meta分析了FET組及新鮮胚胎移植組圍產期并發癥及新生兒結局[24],發現FET組早產、小于胎齡兒、低出生體重、產前出血的發生率較新鮮胚胎移植組低,FET組新生兒圍產期死亡率也較低。最近,一項來自北歐國家的大樣本隊列研究印證了上述結論[25],然而,研究者發現FET組單胎妊娠出生兒大于胎齡兒及巨大兒發生率較新鮮胚胎移植組高,而且最近的一項研究表明,單純母體因素并不能完全解釋FET后巨大兒的高發生率[26]。
新鮮胚胎移植較差的圍產期結局可能與早期胎盤形成不良有關。這可能與新鮮胚胎移植孕婦超生理劑量的E2水平相關。研究表明,E2水平與妊娠前3個月較低的妊娠相關血漿蛋白A(PAPP-A)水平有關。另外,有研究表明,升高的血清E2水平與小于胎齡兒及子癇前期的高發生率[27]有關。
就整體情況而言,FET妊娠結局較新鮮胚胎移植好。由于上述研究均為回顧性研究,質量較好的胚胎均在新鮮胚胎移植組進行移植,如果在新鮮胚胎移植周期行全胚凍FET,且選擇質量最好的胚胎,則圍產期結局可能會更好,但目前關于全胚凍存FET的圍產期結局尚無研究。同時,FET后出生兒大于胎齡兒及巨大兒高發生率的機制也有待進一步研究, 出生兒大于胎齡兒與巨大兒后代的長期健康狀況也需要進一步闡明。
雖然上述臨床證據表明,胚凍存FET較新鮮胚胎移植預后較好,但就以下問題仍有爭議。首先,凍存及凍融過程可能會對胚胎發育產生不利影響,凍存后胚胎的植入潛能與其解凍后質量密切有關,有研究表明,解凍后完整的胚胎較損傷的胚胎有更高的發育及植入潛能[28],但也有研究表明,只有少數卵裂球完整的胚胎仍能正常植入、妊娠,因此,僅靠形態學評估很難預測解凍后胚胎植入能力。解凍后培養是判斷凍存后胚胎活性更為嚴格的標準,從而有效提高胚凍存FET成功率。有研究表明,雙原核受精卵解凍后培養可有效避免移植嚴重凍存損傷胚胎,從而使植入率達到70%[29]。但解凍后培養可能使可移植胚胎數目減少,從而影響FET成功率。其次,有研究發現,解凍后囊胚紡錘體異常發生率較新鮮囊胚高,但研究者發現,雖然解凍后囊胚紡錘體異常發生率較高,但它們解凍后存活率并不受影響,這說明紡錘體異常本身并不會影響有絲分裂及胚胎的進一步發育。再次,有研究發現,解凍后胚胎與新鮮胚胎相比,基因表達有所不用[30],與相同發育階段的新鮮胚胎相比,解凍組與凋亡/壓力通道(BAX)、全能性通道(NANOG、SOX2、CDX2)有關的基因以及母系影響基因(ZAR1、E1F1AX、TSC2)等會發生改變。最后,全胚凍后行PET與新鮮胚胎移植相比,可能會增加患者的花費,這主要取決于各個中心對FET的收費、藥費以及B超監測費用。另外,全胚凍存FET可能會延長患者的治療時間。但如果考慮到FET可以顯著降低OHSS的風險、異位妊娠風險及母兒并發癥的風險,患者的整體花費可能反而低于新鮮移植。
[1] Evans J, Hannan NJ, Edgell TA, et al. Fresh versus frozen embryo transfer: backing clinicaldecisions with scientific and clinical evidence[J]. Hum Reprod Update, 2014,20(6):808-821.
[2] Zeilmaker GH, Alberda AT, van Gent I, Rijkmans CM, et al. Twopregnancies following transfer of intact frozen-thawed embryos. Fertil Steril, 1984,42(2):293-296.
[3] De Mouzon J, Goossens V, Bhattacharya S, et al. European IVF monitoring (EIM) Consortium, for the European Society of Human Reproduction and Embryology (ESHRE). Assisted reproductive technology in Europe, 2006: results generated from European registers by ESHRE[J]. Hum Reprod, 2010,25(8):1851-1862.
[4] Shapiro BS, Daneshmand ST, Garner FC, et al. Clinical rationale for cryopreservation of entire embryo cohorts in lieu of fresh transfer[J]. Fertil Steril, 2014,102(1):3-9.
[5] Dursun A, Sendag F, Terek MC, et al. Morphometric changes in the endometrium and serum leptin levels during the implantation period of the embryo in the rat in response to exogenous ovarian stimulation[J]. Fertil Steril, 2004, 82(Suppl 3):1121-1126.
[6] Sendag F, Akdogan A, Ozbilgin K, et al. Effect of ovarian stimulation with human menopausal gonadotropin and recombinant follicle stimulating hormone on the expression of integrins alpha3, beta1 in the rat endometrium during the implantation period[J]. Eur J Obstet Gynecol Reprod Biol, 2010, 150(1):57-60.
[7] Wilcox AJ, Baird DD, Weinberg CR. Time of implantation of the conceptusand loss of pregnancy[J]. N Engl J Med, 1999, 340(23):1796-1799.
[8] Zapantis G, Szmyga MJ, Rybak EA, et al. Premature formation of nucleolar channel systems indicates advanced endometrial maturation following controlled ovarian hyperstimulation[J]. Hum Reprod, 2013, 28(12):3292-3300.
[9] Ubaldi F, Bourgain C, Tournaye H, et al. Endometrial evaluation by aspiration biopsy on the day of oocyte retrievalin the embryo transfer cycles in patients with serum progesterone rise during the follicular phase[J]. Fertil Steril, 1997, 67(3):521-526.
[10] Cha J, Sun X, Dey SK. Mechanisms of implantation:strategies for successful pregnancy[J]. Nat Med, 2012, 18(12):1754-1767.
[11] Liu Y, Lee KF, Ng EH, et al. Gene expression profiling of human peri-implantation endometria between natural and stimulated cycles[J]. Fertil Steril, 2008, 90(6):2152-2164.
[12] Horcajadas JA, Minguez P, Dopazo J, et al. Controlled ovarian stimulation induces a functional genomic delay of the endometrium with potential clinical implications[J]. J Clin Endocrinol Metab, 2008,93(11):4500-4510.
[13] Li R, Qiao J, Wang L, et al. MicroRNA array and microarray evaluation of endometrial receptivity in patients with high serum progesterone levels on the day of hCG administration[J]. Reprod Biol Endocrinol, 2011,6(9):29.
[14] Lee JY, Lee M, Lee SK.Role of endometrial immune cells in implantation[J]. Clin Exp Reprod Med, 2011,38(3):119-125.
[15] Mariee N, Li TC, Laird SM.Expression of leukaemia inhibitory factor andinterleukin 15 in endometrium of women with recurrent implantation failure after IVF;correlation with the number of endometrial natural killer cells[J]. Hum Reprod, 2012,27(7):1946-1954.
[16] Junovich G, Mayer Y, Azpiroz A, et al.Ovarian stimulation affects the levels of regulatory endometrial NK cells and angiogenic cytokine VEGF[J]. Am J Reprod Immunol, 2011,65(2):146-153.
[17] Shapiro BS, Daneshmand ST, Garner FC, et al.Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization:a prospective randomized trial comparing fresh and frozen-thawed embryo transfer in normal responders[J]. Fertil Steril, 2011,96(2):344-348.
[18] Griesinger G, Schultz L, Bauer T, et al.Ovarian hyperstimulation syndrome prevention by gonadotropin-releasing hormone agonist triggering of final oocyte maturation in a gonadotropin-releasing hormone antagonist protocol in combination with"freeze-all"strategy:a prospective multicentric study[J]. Fertil Steril, 2011, 95(6):2029-2033.
[19] Roque M,Lattes K, Serra S, et al.Fresh embryo transfer versus frozen embryo transfer in in vitro fertilization cycles:a systematic review and meta-analysis[J]. Fertil Steril, 2013,99(1):156-162.
[20] Aflatoonian A, Oskouian H, Ahmadi S, et al.Can fresh embryo transfers be replaced by cryopreserved-thawed embryo transfers in assisted reproductive cycles[J]. J Assist Reprod Genet, 2010,27(7):357-363.
[21] Shapiro BS, Daneshmand ST, Garner FC, et al.Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization:a prospective randomized trial comparing fresh and frozen-thawed embryo transfers in high responders[J]. Fertil Steril, 2011,96(2):516-518.
[22] Shapiro BS, Daneshmand ST, Garner FC, et al.Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization:a prospective randomized trial comparing fresh and frozen thawed embryo transfer in normal responders[J]. Fertil Steril, 2011,96(2):344-348.
[23] Schoolcraft WB, Katz-Jaffe MG.Comprehensive chromosome screening of trophectoderm with vitrification facilitates elective single-embryo transfer for infertile women with advanced maternal age[J]. Fertil Steril, 2013,100(3):615-619.
[24] Xiao Z, Zhou X, Xu W, et al.Natural cycle is superior to hormone replacement therapy cycle for vitrificated-preserved frozen-thawed embryo transfer[J]. Syst Biol Reprod Med, 2012,58(2):107-112.
[25] Shaw JL, Dey SK, Critchley HO, et al .Current knowledge of the aetiology of human tubal ectopic pregnancy[J]. Hum Reprod Update, 2010, 16(4):432-444.
[26] Farquhar CM.Ectopic pregnancy[J]. Lancet, 2005,366(9485):583-591.
[27] Decleer W, Osmanagaoglu K, Meganck G, et al. Slightly lower incidence of ectopic pregnancies in frozen embryo transfer cycles versus fresh in vitro fertilization-embryo transfer cycles: a retrospective cohort study[J]. Fertil Steril, 2014,101(1):162-165.
[28] Lyons RA, Saridogan E, Djahanbakhch O. The reproductive significance ofhuman fallopian tube cilia[J]. Hum Reprod Update, 2006,12(4):363-372.
[29] Huang B, Hu D, Qian K, et al. Is frozen embryo transfer cycle associated with a significantly lower incidence of ectopic pregnancy? An analysis of more than 30,000 cycles[J]. Fertil Steril, 2014,102(5):1345-1349.
[30] Min JK,Breheny SA,MacLachlan V,et al.What is the most relevant standard ofsuccess in assisted reproduction?The singleton, term gestation, live birthrate per cycle initiated:the BESST endpoint for assisted reproduction[J]. Hum Reprod, 2004,19(1):3-7.
[31] Davies MJ, Moore VM, Willson KJ, et al. Reproductive technologies and the risk of birth defects[J]. N Engl J Med, 2012,366(19):1803-1813.
[32] Halliday JL, Ukoumunne OC, Baker HW, et al. Increased risk of blastogenesis birth defects, arising in the first 4 weeks of pregnancy, after assisted reproductive technologies[J]. Hum Reprod, 2010,25(1):59-65.
[33] Maheshwari A, Pandey S, Shetty A, et al. Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of frozen thawed versus fresh embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis[J]. FertilSteril, 2012,98(2):368-377.
[34] Wennerholm UB, Henningsen AK, Romundstad LB, et al. Perinatal outcomes of children born after frozen-thawed embryo transfer: a Nordic cohort study from the CoNARTaS group[J]. Hum Reprod, 2013,28(9):2545-2553.
[35] Pinborg A, Henningsen AA, Loft A,et al. Largebaby syndrome in singletons born after frozen embryo transfer (FET): is it due to maternal factors or the cryotechnique[J]. Hum Reprod, 2014,29(3):618-627.
[36] Giorgetti C,Vanden Meerschaut F, De Roo C, et al. Multivariate analysis identifies the estradiol level at ovulation triggering as an independent predictor of the first trimester pregnancy-associated plasma protein-A level in IVF/ICSI pregnancies[J]. Hum Reprod, 2013,28(10):2636-2642.
[37] Griesinger G, Kolibianakis EM, Papanikolaou EG, et al. Triggering of final oocyte maturation with gonadotropin-releasing hormone agonist or human chorionic gonadotropin. Live birth after frozen-thawed embryo replacement cycles[J]. Fertil Steril, 2007,88:616-621.
[39] Imudia AN, Awonuga AO, Kaimal AJ, Elective cryopreservation of all embryos with subsequent cryothaw embryo transfer in patients at risk for ovarian hyperstimulation syndrome reduces the risk of adverseobstetric outcomes: a preliminary study[J]. Fertil Steril, 2013,99:168-173.
10.3969/j.issn.1002-266X.2017.35.034
R714.7
A
1002-266X(2017)35-0102-04
2017-03-22)