孫斌,楊曉珍,郭向華,2,周育森,孫世惠,王延軍,2
(1首都醫(yī)科大學附屬北京佑安醫(yī)院,北京100069;2北京市肝病研究所;3中國軍事醫(yī)學科學院微生物流行病研究所)
CD80、CD86抗體對耗竭性T細胞效應功能的影響
孫斌1,楊曉珍1,郭向華1,2,周育森3,孫世惠3,王延軍1,2
(1首都醫(yī)科大學附屬北京佑安醫(yī)院,北京100069;2北京市肝病研究所;3中國軍事醫(yī)學科學院微生物流行病研究所)
目的以CD80、CD86抗體作為激動劑、脾細胞為研究對象,觀察CD80、CD86抗體對耗竭性T細胞效應功能的影響。方法將42只8周齡雌性 HLA-A11DR1轉基因小鼠隨機分為7組各6只,分別在8、11、14周齡時,A~F組臀部皮下接種磷脂酰肌醇蛋白聚糖3(GPC3)多肽,G組接種等體積無熱源PBS;A~E組在24周齡和F、G組在17周齡時脫頸處死,取脾臟并制成脾細胞懸液;A、B組分別滴加20、40 μg/mL 抗鼠CD80抗體和10 μg/mL GPC3多肽,C、D組分別滴加20、40 μg/mL 抗鼠CD86抗體和10 μg/mL GPC3多肽,E、F、G組僅滴加10 μg/mL GPC3多肽。孵育18 h后,采用酶聯(lián)斑點分析儀檢測干擾素γ(IFN-γ),以此判斷T細胞效應功能。結果A~G組脾細胞IFN-γ陽性斑點數(shù)分別為(80.61±48.91)、(207.67±60.41)、(1.67±0.97)、(1.33±0.49)、(2.33±1.53)、(38.17±5.18)、(2.33±1.53)個。其中,F(xiàn)組高于E、G組(P均<0.01),E、G組間比較無統(tǒng)計學差異;A組>B組>C、D、E組(P均<0.01),C、D、E組間比較差異無統(tǒng)計學意義;而且,IFN-γ陽性斑點數(shù)隨著CD80抗體濃度升高而增加,二者呈正相關(r=0.760 5,P<0.01)。結論CD80抗體能夠刺激耗竭性T細胞恢復產生細胞因子,且呈劑量依賴的動力效應;而CD86抗體未能檢測到該功能。
CD80抗體;CD86抗體;磷脂酰肌醇蛋白聚糖3;多肽疫苗;T細胞耗竭;干擾素γ
脾細胞主要成分為T細胞和B細胞,T細胞受到肽刺激會產生干擾素γ(IFN-γ),而B細胞則不能。因此,動物免疫實驗中常用肽刺激小鼠脾細胞并檢測IFN-γ的分泌情況,以分析T細胞功能。刺激CD8+T細胞活化并分化為效應性T細胞,是免疫系統(tǒng)保護宿主、清除病原微生物或腫瘤抗原的關鍵。然而,在腫瘤微環(huán)境中,常由于T細胞疲勞耗竭,而致抗腫瘤應答能力弱、效率低下,不能有效識別和清除腫瘤細胞[1];T細胞耗竭的形成通常是由于抗原持續(xù)性存在,缺乏輔助性“幫助”信號引起,從而抑制有效免疫應答的形成。通過治療性疫苗來增強原本微弱的抗腫瘤反應,一直是科學家長期以來所尋求的治療癌癥目標[2~4]。磷脂酰肌醇蛋白聚糖3(GPC3)是在肝癌組織中高表達的癌胚抗原(72%~81%)[5, 6],組織特異性強,且與預后不良相關[5],是肝癌免疫治療的理想靶抗原[5,7~9]。2016年1~12月,我們以CD80、CD86抗體作為激動劑,刺激GPC3疫苗接種后期的耗竭性T細胞,觀察其恢復效應性功能的效果。
1.1 材料 8周齡雌性 HLA-A11DR1轉基因小鼠48只,由軍事醫(yī)學科學院周育森教授研究組構建,購自軍事醫(yī)學科學院實驗動物中心;抗鼠 CD80、CD86抗體均購自eBioscience公司,GPC3多肽由上海強耀生物公司合成;弗氏完全佐劑、不完全佐劑和植物凝集素(PHA)均購自Sigma 公司;Elispot小鼠IFN-γ檢測試劑盒、ACE顯色底物和Falcon細胞篩網(wǎng)均購自BD公司;細胞培養(yǎng)用RPMI 1640培養(yǎng)基、胎牛血清和無熱源PBS緩沖液均購自Gibco公司;酶聯(lián)斑點分析儀購自美國CTL公司。
1.2 動物分組與免疫接種 將42只小鼠隨機分為7組各6只,A~F組接種GPC3多肽,G組接種等體積無熱源PBS,免疫途徑和方法相同。具體方法:將100 μg GPC3多肽與50 μL弗氏完全佐劑按照1∶1的體積比混合(總體積100 μL),并用組織勻漿機乳化,使之達到油包水的效果;分別在8、11、14周齡時,于小鼠臀部皮下注射GPC3多肽100 μL/只。
1.3 脾細胞制備與刺激處理 A~E組在24周齡和F、G組在17周齡時,將小鼠頸椎脫臼處死并取脾臟,經(jīng)細胞篩網(wǎng)組織碾磨后獲得脾細胞懸液,調整細胞密度至2×106/mL。將各組細接種在96孔板,2×105/孔。A、B組分別滴加20、40 μg/mL 抗鼠CD80抗體和10 μg/mL GPC3多肽,C、D組分別滴加20、40 μg/mL 抗鼠CD86抗體和10 μg/mL GPC3,E、F、G組僅滴加10 μg/mL GPC3多肽。每孔總體積100 μL,陽性對照孔中加入5 μg/mL PHA。
1.4 T細胞效應功能觀察 采用酶聯(lián)斑點分析法。取各組孵育18 h的細胞,加入辣根過氧化物酶標記的IFN-γ二抗,室溫放置3 h;每孔加入100 μL TMB底物溶液,室溫顯色10~15 min,陽性對照孔出現(xiàn)深紫色斑點即可停止顯色。采用酶聯(lián)斑點分析儀讀取IFN-γ陽性免疫斑點數(shù),斑點數(shù)越多表明T細胞效應功能越強。

孵育18 h后,A~G組脾細胞IFN-γ陽性免疫斑點數(shù)分別為(80.61±48.91)、(207.67±60.41)、(1.67±0.97)、(1.33±0.49)、(2.33±1.53)、(38.17±5.18)、(2.33±1.53)個。其中F組高于E、G組(P均<0.01),E、G組間比較無統(tǒng)計學差異,表明免疫接種小鼠在免疫應答后期可能出現(xiàn)了T細胞耗竭。A組>B組>C、D、E組(P均<0.01),C、D、E組間比較差異無統(tǒng)計學意義;而且,IFN-γ陽性免疫斑點數(shù)隨著CD80抗體濃度升高而增加,二者呈正相關(r=0.760 5,P<0.01)。
誘導產生持續(xù)性腫瘤抗原特異性CD8+T細胞應答,是保障治療性癌癥疫苗效應的基本要素。大量研究表明,CD8+T細胞必須受到活化的專職抗原提呈細胞(pAPCs)所產生的輔助信號刺激,才能激活并分化為效應性T細胞[9]。GPC3是肝癌免疫治療的理想靶抗原,其多肽疫苗在HLA-A11陽性人群中具有良好的免疫反應性。本研究將GPC3多肽疫苗免疫接種HLA-A11DR1轉基因小鼠,在17周齡時可誘導產生顯著的GPC3特異性T細胞應答,而在24周齡時特異性T細胞應答明顯減弱,表現(xiàn)為特征性的T 細胞耗竭狀態(tài),可能是由于輔助信號缺失引起。
B7家族分子CD80和CD86均是T細胞表面協(xié)同刺激分子CD28的配體,二者具有高度同源性,與CD28結合后產生T細胞活化所需的輔助信號,刺激T細胞增殖分化并發(fā)揮效應功能。CTLA-4分子是T細胞表面協(xié)同刺激分子CD28的結構同源體,二者均能與B7家族分子CD80和CD86功能性結合,但CTLA-4是T細胞表面的抑制性受體;CTLA-4與B7分子的親合力大大強于CD28,故一旦CTLA-4表達在活化T細胞表面,它將降低T細胞活性,抑制細胞增殖和細胞因子分泌[14]。腫瘤微環(huán)境中的特異性效應T細胞功能耗竭[14],往往與T細胞表面抑制性受體過度表達有關[15]。本研究中將CD80抗體與功能耗竭的T細胞共孵育后,細胞因子分泌顯著增加,而且呈劑量依賴的動力效應。這表明CD80抗體阻斷CD80分子與抑制性受體CTLA-4結合,抑制性信號減少,T細胞功能得以恢復。因此,CD80抗體可作為激動劑,刺激耗竭性T細胞恢復效應性功能。然而,CD86雖同為B7家族分子,其抗體與功能耗竭的T細胞共孵育后,未檢測到細胞因子分泌功能的變化,其機制尚需進一步研究。
迄今,已有足夠多的研究表明肝癌患者的腫瘤特異性T細胞功能低下[10~12],而近95%的成年急性乙肝病毒(HBV)感染者則表現(xiàn)出強勁的HBV特異性CD8+T細胞應答。腫瘤患者T細胞功能損害與內源性免疫抑制調節(jié)機制,即免疫檢查點(IC)活化[11, 13]有關;由于CTLA-4是免疫檢查點的關鍵分子,它已成為克服免疫應答抑制性調節(jié)的理想靶點[15]。然而,CTLA-4組織分布廣泛,其表達無腫瘤特異性(除某些骨髓瘤和淋巴瘤外)。阻斷CTLA-4可能導致機體免疫抑制機制缺失,免疫失衡紊亂,繼而引發(fā)劇烈致死性自身免疫病;CTLA-4敲除鼠的超免疫表型也表明,阻斷該受體易導致強烈的免疫毒性副作用,此類研究結果使得封閉CTLA-4的治療策略不斷受到質疑[13,15]。
在我們的研究中,CD80抗體能夠使耗竭性T細胞恢復產生細胞因子,而且呈劑量依賴性。相較于CTLA-4抗體,CD80抗體僅部分阻斷CTLA-4信號;CD86分子仍然可以與CTLA-4受體相結合,產生抑制性信號,維持免疫系統(tǒng)平衡穩(wěn)定,從避免了完全阻斷該受體引起的劇烈自身免疫病。這些突出顯示了選擇性靶向CD80分子,部分阻斷CTLA-4抑制性信號,恢復T細胞功能,在腫瘤免疫治療中的潛在優(yōu)勢。
[1] Bauer CA, Kim EY, Marangoni F, et al. Dynamic Treg interactions with intratumoral APCs promote local CTL dysfunction[J]. J Clin Invest, 2014,124(6):2425-2440.
[2] Lakshminarayanan V, Supekar NT, Wei J, et al. MUC1 vaccines, comprised of glycosylated or non-glycosylated peptides or tumor-derived MUC1, can circumvent immunoediting to control tumor growth in MUC1 transgenic mice[J]. PLoS One, 2016,11(1):e145920.
[3] Derouazi M, Di Berardino BW, Belnoue E, et al. Novel cell-penetrating peptide-based vaccine induces robust CD4+and CD8+T cell-mediated antitumor immunity[J]. Cancer Res, 2015,75(15):3020-3031.
[4] Matsuo K, Machida H, Ragab OM, et al. Extent of pelvic lymphadenectomy and use of adjuvant vaginal brachytherapy for early-stage endometrial cancer[J]. Gynecol Oncol, 2017,144(3):515-523.
[5] Yu J, Ma Q, Zhang B, et al. Clinical application of specific antibody against glypican-3 for hepatocellular carcinoma diagnosis[J]. Sci China Life Sci, 2013,56(3):234-239.
[6] Fu SJ, Qi CY, Xiao WK, et al. Glypican-3 is a potential prognostic biomarker for hepatocellular carcinoma after curative resection[J]. Surgery, 2013,154(3):536-544.
[7] Behboudi S, Boswell S, Williams R. Cell-mediated immune responses to alpha-fetoprotein and other antigens in hepatocellular carcinoma[J]. Liver Int, 2010,30(4):521-526.
[8] 易達委,孫斌,劉曉霓,等. GPC3在癌癥免疫治療及診斷中的意義[J].中國免疫學雜志,2014,30(6):858-861.
[9] 孫斌,李雯,計云霞,等. GPC3特異性HLA-A11限制的T淋巴細胞表位肽免疫活性檢測[J]. 北京醫(yī)學,2014,36(9):752-755.
[10] Sen DR, Kaminski J, Barnitz RA, et al. The epigenetic landscape of T cell exhaustion[J]. Science, 2016,354(6316):1165-1169.
[11] Ngiow SF, Young A, Blake SJ, et al. Agonistic CD40 mAb-Driven IL12 reverses resistance to anti-PD1 in a T-cell-rich tumor[J]. Cancer Res, 2016,76(21):6266-6277.
[12] Isogawa M, Chung J, Murata Y, et al. CD40 activation rescues antiviral CD8(+) T cells from PD-1-mediated exhaustion[J]. PLoS Pathog, 2013,9(7):e1003490.
[13] Bhadra R, Cobb DA, Khan IA. CD40 signaling to the rescue: A CD8 exhaustion perspective in chronic infectious diseases[J]. Crit Rev Immunol, 2013,33(4):361-378.
[14] Pauken KE, Sammons MA, Odorizzi PM, et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade[J]. Science, 2016,354(6316):1160-1165.
[15] Ford ML, Larsen CP. Translating costimulation blockade to the clinic: lessons learned from three pathways[J]. Immunol Rev, 2009,229(1):294-306.
Influence of CD80 and CD86 antibody on effector function of exhausted T cells
SUNBin1,YANGXiaozhen,GUOXianghua,ZHOUYusen,SUNShihui,WANGYanjun1,2*
(1BeijingYouanHospital,CapitalMedicalUniversity,Beijing100069,China)
ObjectiveTo investigate the effects of CD80 and CD86 antibody on the effector function of exhausted T cells.MethodsForty-two female HLA-A11DR1 transgenic mice were randomly divided into 7 groups (n=6). The mice in groups A-F were subcutaneously inoculated with phosphatidylinositol 3 (GPC3) at the age of 8 weeks (week 8), at week 11 and week 14, respectively. Mice in the group G were inoculated with the same volume of heat-free PBS as controls. Mice in the groups A-E were sacrificed at week 24, and groups F and G at week 17. Splenocytes suspension was made. Then, 20 or 40 μg/mL CD80 antibody and 10 μg/mL GPC3 peptide were pipetted in the splenocytes of groups A and B; 20 or 40 μg/mL CD86 antibody and 10 μg/mL GPC3 were pipetted in the groups C and D, respectively; 10 μg/mL GPC3 peptide was pipetted in the groups E, F, and G. After incubation for 18 h, interferon-γ (IFN-γ) was measured by enzyme-linked spot analyzer for analysis of T cell function.ResultsIFN-γ positive spots in the groups A-G were 80.61±48.91, 207.67±60.41, 1.67±0.97, 1.33±0.49, 2.33±1.53, 38.17±5.18 and 2.33±1.53, respectively. Among them, group F was significantly higher than groups E and G (bothP<0.01). There was no significant difference between groups E and G (bothP<0.01). Group A was more than group B, and group B was significantly more than group C, D and E (allP<0.01). There was no significant difference among groups C, D and E. In addition, the number of IFN-γ positive spots was positively correlated with CD80 antibody concentration (r=0.7605,P<0.01).ConclusionsAnti-CD80 could restore the exhausted T cells to secret IFN-γ with a dose-dependent manner, while anti-CD86 could not be detected for the same effect.
CD80 antibody; CD86 antibody; phosphatidylinositol 3; peptide vaccine; T cell exhaustion; interferon-γ
10.3969/j.issn.1002-266X.2017.34.007
R392.5;R575.1
A
1002-266X(2017)34-0024-03
2017-08-04)
北京市科學技術委員會首都市民健康項目(Z141100002114002);北京市衛(wèi)生系統(tǒng)高層次衛(wèi)生技術人才項目(2014-3-092)。
孫斌(1971-),男,博士,主任醫(yī)師,主要研究方向腫瘤及肝病的介入治療。E-mail: sb5368@hotmail.com
王延軍(1971-),女,博士,研究員,主要研究方向為肝病的免疫機制及免疫治療。E-mail: yjunwang@ccmu.edu.cn
孫世惠(1968-),女,副研究員,主要研究方向為轉基因動物模型及病原感染免疫致病機制。E-mail: sunsh01@163.com