999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

例談分類與整合思想的應用

2014-06-11 04:04:20伍利美
師道·教研 2014年2期
關鍵詞:分類

伍利美

分類與整合思想的考查在高考中占有比較重要的位置,通常以解答題為主進行考查.為什么要分類?如何分類?如何整合?這就要求學生必須有嚴謹、周密的邏輯思維能力和一定的分析問題、解決問題的能力.

一、對含有參數的字母進行分類與整合

例1:已知a∈R,求f(x)=x2eax的單調區間.

解:函數f(x)的導數:f'(x)=2xeax+ax2eax=(2x+ax2)eax;

(1)當a=0時,若x<0,則f'(x)<0;若x>0,則f'(x)>0.

所以當a=0,函數f(x)在區間(-∞,0)內為減函數,在區間(0,+∞)內為增函數.

(2)當a>0時,由2x+ax2>0,解得x<-■或x>0,

由2x+ax2<0,解得-■

所以,當a>0時,函數f(x)在區間(-∞,-■)內為增函數,在區間(-■,0)內為減函數,在區間(0,+∞)內為增函數;

(3)當a<0時,由2x+ax2>0,解得0-■.

所以,當a<0時,函數f (x)在區間(-∞,0)內為減函數,在區間(0,-■)內為增函數,在區間(-■,+∞)內為減函數.

評注:數學問題中含有變量或參數,這些變量或參數取不同的值時會導致不同的結果,故需要對參數進行分類討論,再適當進行整合.

二、對排列、組合、概率問題中各種可能出現的結果進行分類與整合

例2:盒子有大小相同的球10個,其中標號為1的球3個,標號為2的球4個,標號為5的球3個,第一次從盒子中任取1個球,放回后第二次再任取1個球(假設取到每個球的可能性都相同),記第一次與第二次取到球的標號之和為ξ,求ξ的分布列.

解:記ξ=k為所取兩球標號之和,則k=2,3,4,6,7,10.

P(ξ=2)=■×■=■;

P(ξ=3)=2×■×■=■;

P(ξ=4)=■×■=■;

P(ξ=6)=2×■×■=■;

P(ξ=7)=2×■×■=■;

P(ξ=10)= ■×■=■.

∴ξ的分布列為

評注:排列、組合、概率問題是考查分類與整合思想的重要載體,應使學生學會如何分步研究解決或分類研究解決,然后再由它們整合出所要求的結果.

三、對幾何問題中元素的形狀、位置變化情況進行分類整合

例3:在平面直角坐標系中,已知矩形ABCD的邊長為2,寬為1、AB、AD邊分別在x軸、y軸的正半軸上,A點與坐標原點重合(如圖所示),將矩形折疊,使A點落在線段DC上.(Ⅰ)若折痕所在直線的斜率為k,試寫出折痕所在直線的方程;(Ⅱ)求折痕的長的最大值.

解:(1)當k=0時,此時A點與D點重合,折痕所在的直線方程y=■;

(2)當k≠0時,將矩形折疊后A點落在線段CD上的點為G(a,l),所以A與G關于折痕所在的直線對稱,有kOGk=-1,■k= -1?圯a=-k;故G點坐標為G(-k,l),從而折痕所在的直線與OG的交點坐標(線段OG的中點)為M(-■,■),折痕所在的直線方程y-■=k(x+■),即y=kx+■+■.

(Ⅱ)(1)當k=0時,折痕的長為2.

(2)當k≠0時,折痕所在的直線與坐標軸的交點坐標為N(0,■),P(-■,0),設PN=d,

d=PN2=(■)2+(-■)2=■

d'=■

令d'=0,解得k=-■

∴PN■■=■,PNmax=■<2

由折痕可知k<0,所以折痕的長度的最大值2.

評注:涉及各種圖形元素的位置關系時應考慮周密,不重不漏.

在重視分類與整合思想的應用時,也應防止見凡參數就討論的輕率做法,能整體解決的就不必分類討論,辯證地運用分類與整合來解題.

責任編輯 羅峰

分類與整合思想的考查在高考中占有比較重要的位置,通常以解答題為主進行考查.為什么要分類?如何分類?如何整合?這就要求學生必須有嚴謹、周密的邏輯思維能力和一定的分析問題、解決問題的能力.

一、對含有參數的字母進行分類與整合

例1:已知a∈R,求f(x)=x2eax的單調區間.

解:函數f(x)的導數:f'(x)=2xeax+ax2eax=(2x+ax2)eax;

(1)當a=0時,若x<0,則f'(x)<0;若x>0,則f'(x)>0.

所以當a=0,函數f(x)在區間(-∞,0)內為減函數,在區間(0,+∞)內為增函數.

(2)當a>0時,由2x+ax2>0,解得x<-■或x>0,

由2x+ax2<0,解得-■

所以,當a>0時,函數f(x)在區間(-∞,-■)內為增函數,在區間(-■,0)內為減函數,在區間(0,+∞)內為增函數;

(3)當a<0時,由2x+ax2>0,解得0-■.

所以,當a<0時,函數f (x)在區間(-∞,0)內為減函數,在區間(0,-■)內為增函數,在區間(-■,+∞)內為減函數.

評注:數學問題中含有變量或參數,這些變量或參數取不同的值時會導致不同的結果,故需要對參數進行分類討論,再適當進行整合.

二、對排列、組合、概率問題中各種可能出現的結果進行分類與整合

例2:盒子有大小相同的球10個,其中標號為1的球3個,標號為2的球4個,標號為5的球3個,第一次從盒子中任取1個球,放回后第二次再任取1個球(假設取到每個球的可能性都相同),記第一次與第二次取到球的標號之和為ξ,求ξ的分布列.

解:記ξ=k為所取兩球標號之和,則k=2,3,4,6,7,10.

P(ξ=2)=■×■=■;

P(ξ=3)=2×■×■=■;

P(ξ=4)=■×■=■;

P(ξ=6)=2×■×■=■;

P(ξ=7)=2×■×■=■;

P(ξ=10)= ■×■=■.

∴ξ的分布列為

評注:排列、組合、概率問題是考查分類與整合思想的重要載體,應使學生學會如何分步研究解決或分類研究解決,然后再由它們整合出所要求的結果.

三、對幾何問題中元素的形狀、位置變化情況進行分類整合

例3:在平面直角坐標系中,已知矩形ABCD的邊長為2,寬為1、AB、AD邊分別在x軸、y軸的正半軸上,A點與坐標原點重合(如圖所示),將矩形折疊,使A點落在線段DC上.(Ⅰ)若折痕所在直線的斜率為k,試寫出折痕所在直線的方程;(Ⅱ)求折痕的長的最大值.

解:(1)當k=0時,此時A點與D點重合,折痕所在的直線方程y=■;

(2)當k≠0時,將矩形折疊后A點落在線段CD上的點為G(a,l),所以A與G關于折痕所在的直線對稱,有kOGk=-1,■k= -1?圯a=-k;故G點坐標為G(-k,l),從而折痕所在的直線與OG的交點坐標(線段OG的中點)為M(-■,■),折痕所在的直線方程y-■=k(x+■),即y=kx+■+■.

(Ⅱ)(1)當k=0時,折痕的長為2.

(2)當k≠0時,折痕所在的直線與坐標軸的交點坐標為N(0,■),P(-■,0),設PN=d,

d=PN2=(■)2+(-■)2=■

d'=■

令d'=0,解得k=-■

∴PN■■=■,PNmax=■<2

由折痕可知k<0,所以折痕的長度的最大值2.

評注:涉及各種圖形元素的位置關系時應考慮周密,不重不漏.

在重視分類與整合思想的應用時,也應防止見凡參數就討論的輕率做法,能整體解決的就不必分類討論,辯證地運用分類與整合來解題.

責任編輯 羅峰

分類與整合思想的考查在高考中占有比較重要的位置,通常以解答題為主進行考查.為什么要分類?如何分類?如何整合?這就要求學生必須有嚴謹、周密的邏輯思維能力和一定的分析問題、解決問題的能力.

一、對含有參數的字母進行分類與整合

例1:已知a∈R,求f(x)=x2eax的單調區間.

解:函數f(x)的導數:f'(x)=2xeax+ax2eax=(2x+ax2)eax;

(1)當a=0時,若x<0,則f'(x)<0;若x>0,則f'(x)>0.

所以當a=0,函數f(x)在區間(-∞,0)內為減函數,在區間(0,+∞)內為增函數.

(2)當a>0時,由2x+ax2>0,解得x<-■或x>0,

由2x+ax2<0,解得-■

所以,當a>0時,函數f(x)在區間(-∞,-■)內為增函數,在區間(-■,0)內為減函數,在區間(0,+∞)內為增函數;

(3)當a<0時,由2x+ax2>0,解得0-■.

所以,當a<0時,函數f (x)在區間(-∞,0)內為減函數,在區間(0,-■)內為增函數,在區間(-■,+∞)內為減函數.

評注:數學問題中含有變量或參數,這些變量或參數取不同的值時會導致不同的結果,故需要對參數進行分類討論,再適當進行整合.

二、對排列、組合、概率問題中各種可能出現的結果進行分類與整合

例2:盒子有大小相同的球10個,其中標號為1的球3個,標號為2的球4個,標號為5的球3個,第一次從盒子中任取1個球,放回后第二次再任取1個球(假設取到每個球的可能性都相同),記第一次與第二次取到球的標號之和為ξ,求ξ的分布列.

解:記ξ=k為所取兩球標號之和,則k=2,3,4,6,7,10.

P(ξ=2)=■×■=■;

P(ξ=3)=2×■×■=■;

P(ξ=4)=■×■=■;

P(ξ=6)=2×■×■=■;

P(ξ=7)=2×■×■=■;

P(ξ=10)= ■×■=■.

∴ξ的分布列為

評注:排列、組合、概率問題是考查分類與整合思想的重要載體,應使學生學會如何分步研究解決或分類研究解決,然后再由它們整合出所要求的結果.

三、對幾何問題中元素的形狀、位置變化情況進行分類整合

例3:在平面直角坐標系中,已知矩形ABCD的邊長為2,寬為1、AB、AD邊分別在x軸、y軸的正半軸上,A點與坐標原點重合(如圖所示),將矩形折疊,使A點落在線段DC上.(Ⅰ)若折痕所在直線的斜率為k,試寫出折痕所在直線的方程;(Ⅱ)求折痕的長的最大值.

解:(1)當k=0時,此時A點與D點重合,折痕所在的直線方程y=■;

(2)當k≠0時,將矩形折疊后A點落在線段CD上的點為G(a,l),所以A與G關于折痕所在的直線對稱,有kOGk=-1,■k= -1?圯a=-k;故G點坐標為G(-k,l),從而折痕所在的直線與OG的交點坐標(線段OG的中點)為M(-■,■),折痕所在的直線方程y-■=k(x+■),即y=kx+■+■.

(Ⅱ)(1)當k=0時,折痕的長為2.

(2)當k≠0時,折痕所在的直線與坐標軸的交點坐標為N(0,■),P(-■,0),設PN=d,

d=PN2=(■)2+(-■)2=■

d'=■

令d'=0,解得k=-■

∴PN■■=■,PNmax=■<2

由折痕可知k<0,所以折痕的長度的最大值2.

評注:涉及各種圖形元素的位置關系時應考慮周密,不重不漏.

在重視分類與整合思想的應用時,也應防止見凡參數就討論的輕率做法,能整體解決的就不必分類討論,辯證地運用分類與整合來解題.

責任編輯 羅峰

猜你喜歡
分類
2021年本刊分類總目錄
分類算一算
垃圾分類的困惑你有嗎
大眾健康(2021年6期)2021-06-08 19:30:06
星星的分類
我給資源分分類
垃圾分類,你準備好了嗎
學生天地(2019年32期)2019-08-25 08:55:22
分類討論求坐標
數據分析中的分類討論
按需分類
教你一招:數的分類
主站蜘蛛池模板: 一级片一区| 亚洲日韩AV无码一区二区三区人 | 99久久成人国产精品免费| 亚洲系列无码专区偷窥无码| 婷婷综合色| 国产18在线| 婷婷亚洲天堂| 97久久精品人人| 手机精品视频在线观看免费| 国产中文一区a级毛片视频| 天天色综网| 欧美不卡在线视频| 亚洲无码高清一区| 色婷婷国产精品视频| 免费看一级毛片波多结衣| 黑人巨大精品欧美一区二区区| 久久精品欧美一区二区| 19国产精品麻豆免费观看| 国产系列在线| 日日拍夜夜操| AV网站中文| 久久久波多野结衣av一区二区| 欧洲av毛片| 高清无码一本到东京热| 免费毛片视频| 亚洲欧美自拍视频| 国产一级片网址| 亚洲综合狠狠| 欧美一级夜夜爽| 青草免费在线观看| 欧美一级在线看| 久久久久免费精品国产| 国产尤物视频网址导航| 国产精品浪潮Av| 国禁国产you女视频网站| 国产精品无码AV中文| 久久国产亚洲偷自| 国产精品手机在线观看你懂的 | 日韩人妻无码制服丝袜视频| 色有码无码视频| 国产成人精品优优av| 国产av剧情无码精品色午夜| 亚洲精品不卡午夜精品| 天天操精品| 99热这里只有免费国产精品| 国产精品极品美女自在线网站| 久久黄色免费电影| 日韩专区欧美| 亚洲天堂久久| 999精品在线视频| 红杏AV在线无码| 中文字幕中文字字幕码一二区| 456亚洲人成高清在线| 乱人伦视频中文字幕在线| 欧美日本不卡| 激情综合婷婷丁香五月尤物| 国产综合网站| 国产精品视频3p| 亚洲中文字幕在线一区播放| 国产真实自在自线免费精品| 99久久精品免费观看国产| 99国产在线视频| 国产爽爽视频| 久青草国产高清在线视频| 日韩中文欧美| 囯产av无码片毛片一级| 国产91九色在线播放| 久久夜色精品国产嚕嚕亚洲av| 日韩精品亚洲一区中文字幕| 国产sm重味一区二区三区| 国产一级在线观看www色| 久久国产热| 人妻熟妇日韩AV在线播放| 日韩麻豆小视频| 波多野结衣无码视频在线观看| 亚洲成人在线免费观看| 9cao视频精品| 综合网久久| 中文字幕1区2区| 日韩精品一区二区三区视频免费看| 在线观看无码a∨| 黄色污网站在线观看|