999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

腦皮層功能定位技術(shù)在臨床研究中的應(yīng)用發(fā)展

2017-06-05 15:16:32溫建斌李小俚
中國醫(yī)療設(shè)備 2017年5期
關(guān)鍵詞:功能

溫建斌,李小俚

北京師范大學(xué) 認(rèn)知神經(jīng)科學(xué)與學(xué)習(xí)國家重點(diǎn)實(shí)驗室,北京 100875

腦皮層功能定位技術(shù)在臨床研究中的應(yīng)用發(fā)展

溫建斌,李小俚

北京師范大學(xué) 認(rèn)知神經(jīng)科學(xué)與學(xué)習(xí)國家重點(diǎn)實(shí)驗室,北京 100875

皮層功能定位對于保證神經(jīng)外科手術(shù)的效果有重要作用,而皮層電刺激技術(shù)一直以來都被認(rèn)為是臨床皮層功能定位的“金標(biāo)準(zhǔn)”。隨著神經(jīng)成像技術(shù)和理論的發(fā)展,越來越多新的方法也開始被應(yīng)用于神經(jīng)外科皮層功能定位,包括皮層腦電圖、正電子放射斷層掃描、功能核磁共振成像、腦磁圖、經(jīng)顱磁刺激以及皮層光學(xué)成像等。本文對這些技術(shù)的原理分別作了簡單介紹,并從臨床可靠性、安全性、檢測效率、成本以及應(yīng)用現(xiàn)狀等方面對它們進(jìn)行比較。文章最后對臨床皮層功能定位技術(shù)的未來發(fā)展?fàn)顩r作出了展望。

皮層功能定位;神經(jīng)外科;功能核磁成像;經(jīng)顱磁刺激;皮層腦電圖

引言

神經(jīng)外科手術(shù)對于藥物難治性癲癇[1]、腦血管疾病[2]以及腦腫瘤等[3]均有較好的治愈效果。但是,當(dāng)大腦的重要功能區(qū)與病灶臨近或重合時,便會受到損毀手術(shù)的影響,從而引起功能損傷。大部分術(shù)后功能區(qū)受損的病人會在3個月內(nèi)得到恢復(fù),但約有5%的病人會形成永久損傷[4]。因此,如何能準(zhǔn)確地對大腦重要的功能區(qū)進(jìn)行定位對手術(shù)方案的制定和病人的愈后有重要意義。皮層電刺激技術(shù)(Electrical Cortical Stimulation,ECS)一直以來被認(rèn)為是臨床上皮層功能定位的“金標(biāo)準(zhǔn)”,但隨著神經(jīng)信號采集以及神經(jīng)成像技術(shù)和理論的發(fā)展,越來越多的新方法也開始被應(yīng)用于神經(jīng)外科皮層功能定位。除了皮層電刺激之外,目前可在臨床上用于皮層功能定位的技術(shù)包括:皮層腦電圖(Electrocorticography,ECoG)、正電子放射斷層掃描(Positron Emission Tomography,PET)、功能核磁共振成像(Functional Magnetic Resonance Imaging,fMRI)、腦磁圖(Magnetoencephalography,MEG)、經(jīng)顱磁刺激(Transcranial Magnetic Stimulation,TMS)和皮層光學(xué)成像(Optical Cortical Imaging,OCI)等。

總的來說,皮層功能定位技術(shù)可采取的策略可大體分為兩種:① 觀測記錄相關(guān)腦區(qū)在特定認(rèn)知任務(wù)下的活動狀態(tài),如電/磁信號(ECoG和MEG)、光信號(OCI)或代謝強(qiáng)度(fMRI和PET)等指標(biāo)。采用這種策略可以說明相關(guān)腦區(qū)參與了特定認(rèn)知過程,但無法證明其充分性和必要性;② 對相關(guān)皮層區(qū)域施加刺激并考察引起的后果(ECS和TMS)。如果刺激引起抑制性的效果,則可以暫時造成目標(biāo)皮層區(qū)域失活,從而直接模擬手術(shù)可能造成的認(rèn)知損傷,驗證了該皮層區(qū)域?qū)τ谙嚓P(guān)功能的必要性;反之,如果刺激是興奮性的,則可以通過觀察其是否能引起相關(guān)的預(yù)期反應(yīng)而確定相關(guān)皮層區(qū)域的功能。除了總體技術(shù)策略,這些方法在原理上也各不相同,在臨床可靠性、檢測效率、安全性以及成本方面也存在差別,本文將分別對其作簡單介紹,比較其應(yīng)用現(xiàn)狀,并就未來發(fā)展作出展望。

1 皮層功能定位技術(shù)簡介

1.1 皮層電刺激技術(shù)

ECS的發(fā)展最早可以追溯到19世紀(jì),于1910年前后開始作為一種穩(wěn)定可靠的功能定位技術(shù)被應(yīng)用于神經(jīng)外科手術(shù),一直至今。ECS需要開顱進(jìn)行,通過直接放置在皮層表面的電極施加電流刺激而對相關(guān)皮層區(qū)域造成干擾,從而判斷其功能。作為臨床應(yīng)用時間最長的皮層功能定位技術(shù),ECS已經(jīng)使無數(shù)病人免受外科術(shù)后的功能損傷,其可靠性也得到諸多系統(tǒng)研究的支持[5-6]。實(shí)際上,盡管有很長的歷史,幾十年來ECS本身并沒有很多實(shí)質(zhì)性的改變,臨床上甚至沒有一套嚴(yán)格的標(biāo)準(zhǔn)化操作規(guī)程[7]。由于是直接對皮層施加電刺激,在應(yīng)用于癲癇病人時,ECS有誘發(fā)后放電甚至發(fā)作的風(fēng)險,另外,在應(yīng)用于兒科病人時,由于發(fā)育中的皮層對于電刺激的耐受性較差,往往不能取得理想效果。ECS的另外一個缺點(diǎn)是效率低,每個刺激點(diǎn)需要從弱電流開始,重復(fù)若干次后再逐步加強(qiáng),且刺激間需要留有充分間隔。這樣導(dǎo)致一個典型的術(shù)前硬膜下植入電極電刺激功能定位程序耗時經(jīng)常長達(dá)數(shù)小時。盡管如此,ECS仍然是應(yīng)用最為廣泛的皮層功能定位技術(shù),其也經(jīng)常被用作標(biāo)準(zhǔn)來評估其他功能定位技術(shù)的效果。

1.2 皮層功能定位法-皮層腦電信號定位法

相較而言,用皮層腦電定位重要功能區(qū)可以免除電刺激帶來的風(fēng)險,且能夠同步處理所有電極通道來源的數(shù)據(jù),提高了效率。而且由于其高信噪比和高時空分辨率,很多研究者開發(fā)出基于皮層高頻伽馬活動的快速或?qū)崟r功能定位系統(tǒng)[19-22]。利用皮層腦電信號確定功能區(qū)的缺點(diǎn)在于,它不能夠反映全腦的信息,也不能記錄(或刺激)到大腦溝回里面和深部(如內(nèi)側(cè)顳葉和海馬)皮層組織,電極之間的區(qū)域也可能被漏測,而這些也幾乎是所有侵入性功能定位技術(shù)都面臨的問題。

1.3 正電子放射斷層掃描技術(shù)

PET技術(shù)發(fā)展于上世紀(jì)50年代,其基本原理是將能夠被人體正常代謝的分子用能夠進(jìn)行正β衰變的同位素標(biāo)記,然后在特定的時間窗口內(nèi),通過記錄同位素衰變引起的物理效應(yīng)來確定相關(guān)分子在空間中的密度分布,從而達(dá)到對人體組織進(jìn)行結(jié)構(gòu)成像和功能成像的目的。神經(jīng)功能成像常用的標(biāo)的物有15O標(biāo)記的水分子和氟代脫氧葡萄糖(18F-FDG),前者通過皮層血流量來反映神經(jīng)細(xì)胞的活動強(qiáng)度,后者與細(xì)胞對于葡萄糖攝取的情況相關(guān),從而反映細(xì)胞活動水平。PET技術(shù)可以用于多種功能定位,如軀體感覺、運(yùn)動和語言等[23-25]。但此項技術(shù)的缺點(diǎn)有很多,其空間分辨率最高僅能達(dá)到4 mm,而其信號本身也不能反映隨時間變化的情況[26]。PET設(shè)備部署成本較高,圖像采集時需要的放射性顯像劑相對昂貴,并且顯像劑的注射和在體內(nèi)駐留都可能對人體造成不良影響。

1.4 腦磁圖技術(shù)

MEG技術(shù)發(fā)展于上世紀(jì)60年代,其依靠探測由神經(jīng)電活動引起的空間磁場變化來記錄腦活動。由于神經(jīng)電活動很微弱,產(chǎn)生的磁場變化也很難探測,因此MEG需要及其靈敏的超導(dǎo)量子干涉探頭才能捕捉到有效信號。早期的MEG主要利用軀體感覺誘發(fā)磁場對軀體感覺區(qū)進(jìn)行定位[27-28],隨后類似的原理也被應(yīng)用于運(yùn)動和語言等[29-30]相關(guān)功能的定位。近年來也有許多研究者開始關(guān)注MEG記錄到的不同頻段的皮層活動與認(rèn)知任務(wù)之間的關(guān)系[31-32]。MEG是一種非侵入性的腦成像設(shè)備,其空間分辨率可以達(dá)到毫米級,時間分辨率可以達(dá)到毫秒級,因此除了功能定位之外,在臨床上也多用于記錄分析某些異常放電活動,如癲癇[33]。但此種技術(shù)的缺點(diǎn)在于設(shè)備部署和采集成本很高,而其對于相關(guān)溯源算法的依賴也使其計算結(jié)果的可靠性一直受到爭議,這也一直是該領(lǐng)域研究者們所關(guān)注的焦點(diǎn)[34]。

1.5 功能核磁共振成像技術(shù)

MRI發(fā)展于上世紀(jì)70年代,其基本原理是通過在強(qiáng)梯度磁場下疊加一個高頻激發(fā)磁場,使得特定原子(通常為氫原子或氧原子)能級狀態(tài)發(fā)生變化,通過檢測原子狀態(tài)轉(zhuǎn)換時以電磁波形式逸出的能量來獲得該種類原子的空間密度分布,從而區(qū)分不同組織或活動狀態(tài)。fMRI是基于MRI的腦功能定位技術(shù),其主要觀測指標(biāo)血氧水平依賴(Blood-Oxygen-Level Dependent,BOLD)信號,與PET類似,都是利用了局部神經(jīng)活動強(qiáng)度與代謝原料的需求關(guān)系。

隨著fMRI在認(rèn)知神經(jīng)科學(xué)領(lǐng)域的普及,大量的研究也開始關(guān)注其在皮層功能定位中的應(yīng)用。早期若干研究初步確認(rèn)了fMRI在皮層運(yùn)動及體感功能定位上的可行性[35-40]。隨后有研究開始系統(tǒng)評估fMRI在臨床應(yīng)用效果,如Lee等[41]在其神經(jīng)外科中心的病例回顧報告中指出,fMRI運(yùn)動功能定位的結(jié)果對89%的腫瘤病人和91%的癲癇病人手術(shù)過程有貢獻(xiàn); Krishanan等[42]發(fā)現(xiàn),手術(shù)切除部位如果在fMRI功能激活點(diǎn)10 mm范圍以外則基本不會造成運(yùn)動功能損傷,而在5 mm以內(nèi)則有很可能造成術(shù)后運(yùn)動功能損傷。fMRI在語言功能定位中得到結(jié)果則并不盡如人意,如 Giussani等[43]在一份文獻(xiàn)總結(jié)中報道稱,如果以術(shù)中皮層電刺激為標(biāo)準(zhǔn)的話,fMRI的語言功能定位結(jié)果敏感性為59%~100%,而特異性為0%~97%。造成這種現(xiàn)象的主要原因是語言功能本身的復(fù)雜性,但其也常受到病人病理狀態(tài)[44]、任務(wù)設(shè)計[45]、磁場強(qiáng)度[46-47]以及采集參數(shù)的影響。

大家都承認(rèn)科學(xué)普及出版社于2006年翻譯出版的英國惠特菲爾德所著《彩圖世界科技史》(原書名:History of Science;2003年出版于英國)是一本很好的科普著作.然而不管該書的作者是否具有“科普”的潛在追求,但該書的性質(zhì)卻明白無誤的是“科學(xué)史”——正如其原書名所示:History of Science;其編寫方式也是歷史性的(時間順序).科學(xué)史是一個學(xué)科、專業(yè),但絕對不是“科普”專業(yè).那么我們何以會將其視為一本很好的科普著作呢?

fMRI在時空分辨率和信噪比上都優(yōu)于PET,幾乎不會對人體造成損傷,其信號采集基本亦不需要額外的成本,而且隨著技術(shù)的推廣,部署成本也顯著降低。fMRI的空間分辨率可隨著外部梯度磁場強(qiáng)度的提高而提高,但也受限于其信號本身的屬性,因為產(chǎn)生BOLD信號的微動脈和微靜脈與活動的神經(jīng)元之間約有1 mm的誤差。類似的,由于神經(jīng)活動與血氧信號之間的延遲關(guān)系,其時間分辨率最短也只能以秒計。

fMRI在應(yīng)用中最大的挑戰(zhàn)是其信號極易受到運(yùn)動干擾,有研究表明受試者頭部不到1 mm的位移就會對成像結(jié)果產(chǎn)生顯著影響[48],而病人又常常比正常人更易出現(xiàn)不自主的運(yùn)動,為此很多研究者著力于發(fā)展新的固定或監(jiān)測設(shè)備[49]和頭動矯正算法[50]。此外,也有很多研究者致力于將fMRI納入標(biāo)準(zhǔn)化的操作流程,為此他們提出針對整套的多種皮層功能定位的任務(wù)方案,這些整套任務(wù)可以迅速完成包括語言、運(yùn)動、視覺甚至情感等功能的皮層定位[51-53]。另外值得一提的是,與功能定位密切相關(guān)的白質(zhì)纖維追蹤也只能靠以MRI為基礎(chǔ)的彌散張量成像技術(shù)(Diffusion Tensor Imaging,DTI)來實(shí)現(xiàn),鑒于此,fMRI和DTI的聯(lián)合應(yīng)用有望被納入神經(jīng)外科手術(shù)的標(biāo)準(zhǔn)規(guī)程[54]。

fMRI在臨床皮層功能定位方面近來有兩個方面的發(fā)展值得關(guān)注,實(shí)時功能核磁成像(Real-time fMRI,Rt-fMRI)和靜息態(tài)功能核磁成像(Resting-state fMRI,Rs-fMRI)。自Cox等[55]最早實(shí)現(xiàn)了Rt-fMRI以來,隨著圖像采集技術(shù),計算機(jī)計算能力以及算法的提高和改進(jìn),其可靠性和實(shí)用性都大大提高。目前Rt-fMRI主要基于回波平面成像,它能夠最大限度的提高圖像采集速率。Rt-fMRI的數(shù)據(jù)處理可以在一個滑動時間窗里進(jìn)行,也可以是對之前全部數(shù)據(jù)進(jìn)行計算形成積累統(tǒng)計量。Rt-fMRI已經(jīng)被成功應(yīng)用于包括運(yùn)動、軀體感覺和語言等多種功能的皮層定位[56-58]。盡管其相對于傳統(tǒng)方法在噪聲去除和分辨率上有所欠缺,有效性也缺少大樣本數(shù)據(jù)支持,但其時效性在臨床環(huán)境下無疑具有很大的優(yōu)越性。

Biswal等[59]首次發(fā)現(xiàn)低于0.1 Hz的自發(fā)fMRI信號中也有重要信息,即低頻皮層活動信號在互相關(guān)聯(lián)的區(qū)域呈現(xiàn)出很高的相關(guān)性,這構(gòu)成了Rs-fMRI技術(shù)的理論基礎(chǔ)[60]。在方法上,Rs-fMRI可以用解剖位置較為明確的種子點(diǎn)感興趣區(qū)來定位相關(guān)聯(lián)的其他功能區(qū),如被腫瘤影響的運(yùn)動區(qū)可以通過計算與對側(cè)未受影響的運(yùn)動區(qū)的相關(guān)性而得到定位[61];還可以通過獨(dú)立成分分析(Independent Component Analysis,ICA)自動提取各功能網(wǎng)絡(luò)[62]。相較而言,種子點(diǎn)分析得到的結(jié)果較為準(zhǔn)確,但長距離功能連接尤其是兩半球之間的連接很容易受到影響,因此有得出錯誤結(jié)論的風(fēng)險;ICA不需要確定種子點(diǎn),也較少受連接缺失影響,因為其可以將被隔開的功能網(wǎng)絡(luò)呈現(xiàn)為兩個獨(dú)立部分,但I(xiàn)CA的缺點(diǎn)在于得到的結(jié)果很多是無意義或噪音成分,其需要經(jīng)過人為挑選來確定重要功能。

總體而言,Rs-fMRI的優(yōu)點(diǎn)在于其適用于很多不能配合認(rèn)知任務(wù)的病人群體,如運(yùn)動或認(rèn)知功能受損的患者和低齡兒童等,其也能夠在睡眠甚至麻醉狀態(tài)下進(jìn)行,此外其利用同一批數(shù)據(jù)即可定位所有功能網(wǎng)絡(luò),這大大提高了效率。

1.6 經(jīng)顱磁刺激技術(shù)

1985年,Barker等[63]首次實(shí)現(xiàn)了用磁脈沖對人腦運(yùn)動皮層的非侵入性刺激,即TMS。TMS的基本原理是通過放置在頭部上方的電磁線圈快速充放電,在線圈下方空間產(chǎn)生聚焦于某一點(diǎn)并快速變化的磁場,進(jìn)而在目標(biāo)區(qū)域產(chǎn)生電場刺激神經(jīng)組織。近來,隨著依據(jù)個體核磁成像數(shù)據(jù)的導(dǎo)航系統(tǒng)被引入TMS系統(tǒng)[64]以及刺激線圈及參數(shù)的優(yōu)化,TMS的空間分辨率大大提高,其在實(shí)質(zhì)上已經(jīng)成為最接近皮層電刺激的技術(shù),而其本身具有的無創(chuàng)性更使得其在臨床上得到迅速普及[65-66]。很多研究者[67-70]都論證了TMS在運(yùn)動功能和語言功能定位中的有效性。TMS在臨床應(yīng)用的安全性也得到了大樣本數(shù)據(jù)的支持[71]。最近有一些回顧性報道指出,TMS應(yīng)用于術(shù)前功能評估可以減小開顱面積,縮短手術(shù)時間,以及更好地避免術(shù)后功能損傷[72-74]。

1.7 皮層光學(xué)成像技術(shù)

神經(jīng)元活動同樣可以改變大腦皮層的光學(xué)特性,如對特定波長光線的吸收率和散射率等等,以此作為基礎(chǔ)的光學(xué)成像技術(shù)也可以用來進(jìn)行皮層功能定位[75]。目前臨床研究較多的OPI都是以血紅蛋白相關(guān)信號為基礎(chǔ),因此其與BOLD信號的機(jī)制類似,但在時空分辨率上能高一到兩個數(shù)量級[76]。OPI應(yīng)用于外科手術(shù)皮層功能成像已有若干報道[77-85],包括軀體感覺、運(yùn)動和語言等,其可靠性也得到了較為系統(tǒng)的驗證。光學(xué)信號的采集也需要在開顱條件下進(jìn)行,而且其需要額外的數(shù)據(jù)采集分析設(shè)備,因此臨床推廣程度并不高。

但OPI幾乎是目前神經(jīng)科學(xué)領(lǐng)域發(fā)展最快的技術(shù)[86],多光子顯微成像已經(jīng)可以實(shí)現(xiàn)以單細(xì)胞甚至亞細(xì)胞級的空間分辨率和10 kHz的時間分辨率對腦皮層進(jìn)行在體記錄[87]。由于目前在神經(jīng)科學(xué)領(lǐng)域應(yīng)用的OPI多依賴于轉(zhuǎn)基因熒光蛋白或外部熒光標(biāo)記物質(zhì),且成像的視野范圍受限于鏡頭尺寸而十分有限,因此較少在臨床應(yīng)用。但筆者認(rèn)為安全有效的熒光活性物質(zhì)的開發(fā)和成像范圍的擴(kuò)大都是可以逐步解決的問題,因而將高分辨率光學(xué)成像用于OPI研究具有很好的發(fā)展應(yīng)用前景。

2 皮層功能定位技術(shù)間的比較和聯(lián)合應(yīng)用

實(shí)際上,每一種單獨(dú)的技術(shù)方案都有其自身的諸多限制,無法實(shí)現(xiàn)對大腦皮層功能的充分精確定位。因此,應(yīng)用多種技術(shù)聯(lián)合施測將有助于直接比較不同方法間的差異,進(jìn)而得到更為準(zhǔn)確的結(jié)果。皮層功能定位技術(shù)間的比較結(jié)果,見表1。

表1 皮層功能定位技術(shù)比較

早在1995年,Morioka等[88]就聯(lián)合使用MEG、fMRI、運(yùn)動誘發(fā)電位和TMS來定位一名癲癇病人的運(yùn)動皮層,并獲得一致性較好的結(jié)果。Shinoura等[89]經(jīng)過比較指出定位軀體感覺皮層時,fMRI比體感誘發(fā)電位更為可靠。Roberts等[90]比較了fMRI和TMS在運(yùn)動皮層定位上的結(jié)果,發(fā)現(xiàn)兩者誤差在5 mm以內(nèi),但Lotze等[91]發(fā)現(xiàn)兩者在3D空間里誤差達(dá)13.9 mm,并認(rèn)為其與兩種技術(shù)原理的差異有關(guān)。Forster等[92]發(fā)現(xiàn),以皮層電刺激為標(biāo)準(zhǔn)的話,TMS的誤差為(10.5±5.67)mm,而fMRI的誤差為(15.0±7.61)mm,Coburger等[93]也得到類似的結(jié)論。

但同樣以皮層電刺激為標(biāo)準(zhǔn), Babajani-Feremi等[94]于最近的一項研究中指出fMRI的定位準(zhǔn)確度雖然不及ECoG,但優(yōu)于TMS。造成這種差異的原因可能是多方面的,這也從另外一個角度說明fMRI于TMS在準(zhǔn)確度上基本相當(dāng)。為了彌補(bǔ)fMRI時間分辨率低的問題, Dale等[95]開發(fā)了一種將fMRI和MEG結(jié)合應(yīng)用的方法,并將其應(yīng)用于語言功能定位,得到高時空分辨率的結(jié)果,這一技術(shù)隨后得到了ECoG的驗證[96]。這表明聯(lián)合應(yīng)用無創(chuàng)技術(shù)可以達(dá)到與顱內(nèi)皮層直接檢測技術(shù)相當(dāng)?shù)慕Y(jié)果。

3 總結(jié)與展望

綜合而言,fMRI和TMS在目前的無創(chuàng)功能定位技術(shù)中最適用于臨床環(huán)境。fMRI設(shè)備近來在國內(nèi)的普及程度大幅提高,技術(shù)和理論的發(fā)展也已經(jīng)相對成熟,而其與DTI技術(shù)結(jié)合能夠為神經(jīng)外科手術(shù)提供非常有價值的信息。TMS操作簡單,且其能夠解決fMRI不能確定的必要性的問題,但TMS的效率不高,因此其適合在fMRI的定位結(jié)果的基礎(chǔ)上進(jìn)行驗證性施測,以節(jié)省時間。術(shù)前無創(chuàng)功能定位技術(shù)目前尚無法取代術(shù)中直接皮層定位,因此皮層電刺激仍然是神經(jīng)外科手術(shù)功能定位的標(biāo)準(zhǔn)流程操作,但術(shù)中ECoG具有諸多方面的優(yōu)勢,也正在受到越來越多的重視。然而,筆者認(rèn)為在未來10~20年的時間內(nèi),光學(xué)成像將發(fā)展成為臨床術(shù)中皮層活動記錄的主要技術(shù)。

[1] Moshe SL,Perucca E,Ryvlin P,et al. Epilepsy: new advances[J]. Lancet,2014,385(9971):884-898.

[2] Hartmann A,Stapf C,Hofmeister C,et al. Determinants of neurological outcome after surgery for brain arteriovenous malformation[J].Stroke,2000,31(10):2361-2364.

[3] Berger MS,Deliganis AV,Dobbins J,et al. The effect of extent of resection on recurrence in patients with low grade cerebral hemisphere gliomas[J].Cancer,1994,74(6):1784-1791.

[4] Duffau H,Capelle L,Denvil D,et al. The role of dominant premotor cortex in language: a study using intraoperative functional mapping in awake patients[J].Neuroimage,2003, 20(4):1903-1914.

[5] Berger MS,Kincaid J,Ojemann GA,et al. Brain mapping techniques to maximize resection, safety, and seizure control in children with brain tumors[J].Neurosurgery,1989, 25(5):786-792.

[6] Duffau H,Lopes M,Arthuis F,et al. Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: a comparative study between two series without (1985-1996) and with (1996-2003) functional mapping in the same institution[J]. J Neurol Neurosurg Psychiatry,2005,76(6):845-851.

[7] Borchers S,Himmelbach M,Logothetis N,et al. Direct electrical stimulation of human cortex-the gold standard for mappingbrain functions?[J].Nat Rev Neurosci,2011,13(1):63-70.

[8] Woolsey CN,Erickson TC,Gilson WE. Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation[J].J Neurosurg,1979,51(4):476-506.

[9] Sanai N,Mirzadeh Z,Berger MS. Functional outcome after language mapping for glioma resection[J].N Engl J Med, 2008,358(1):18-27.

[10] Lachaux JP,Axmacher N,Mormann F,et al. High-frequency neural activity and human cognition: past, present and possible future of intracranial EEG research[J].Prog Neurobiol,2012, 98(3):279-301.

[11] Crone NE,Miglioretti DL,Gordon B,et al. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization[J]. Brain,1998,121(12):2271-2299.

[12] Cervenka MC,Corines J,Boatman-Reich DF,et al.Electrocorticographic functional mapping identif i es human cortex critical for auditory and visual naming[J].Neuroimage,2013,69(4):267-276.

[13] Jensen O1,Kaiser J,Lachaux JP. Human gamma-frequency oscillations associated with attention and memory[J].Trends Neurosci,2007,30(7):317-324.

[14] Crone NE,Sinai A,Korzeniewska A. High-frequency gamma oscillations and human brain mapping with electrocorticography[J]. Prog Brain Res,2006,159(159):275-295.

[15] Sinai A,Bowers CW,Crainiceanu CM,et al. Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming[J].Brain,2005,128(7):1556-1570.

[16] Towle VL,Yoon HA,Castelle M,et al. ECoG gamma activity during a language task: differentiating expressive and receptive speech areas[J].Brain,2008,131(8):2013-2027.

[17] Ritaccio A1,Brunner P,Cervenka MC,et al.Proceedings of the first international workshop on advances in electrocorticography[J].Epilepsy Behav,2010,19(3):204-215.

[18] Harkness W.Do we still need invasive recordings? If so for how much longer?[J].Childs Nerv Syst,2010,26(4):503-511.

[19] Prueckl R,Kapeller C,Potes C,et al.CortiQ-Clinical software for electrocorticographic real-time functional mapping of the eloquent cortex[A]. Proceedings of the Engineering in Medicine and Biology Society(EMBC),2013 35th Annual International Conference[C].New York:IEEE,2013.

[20] Qian T,Zhou W,Ling Z,et al.Fast presurgical functional mapping using task-related intracranial high gamma activity[J].J Neurosurg, 2013,119(1):26-36.

[21] Lachaux JP,Jerbi K,Bertrand O,et al.BrainTV: a novel approach for online mapping of human brain functions[J].Biol Res,2007, 40(4):401-413.

[22] Schalk G,Leuthardt EC,Brunner P,et al.Real-time detection of event-related brain activity[J].Neuro Image,2008,43(2):245-249.

[23] Fox PT,Burton H,Raichle ME.Mapping human somatosensory cortex with positron emission tomography[J].J Neurosurg, 1987,67(1):34-43.

[24] Schreckenberger M,Spetzger U,Sabri O,et al. Localisation of motor areas in brain tumour patients: a comparison of preoperative [18F] FDG-PET and intraoperative cortical electrostimulation[J].Eur J Nucl Med,2001,28(9):1394-1403.

[25] Vanlancker-Sidtis D,McIntosh AR,Grafton S. PET activation studies comparing two speech tasks widely used in surgical mapping[J].Brain Lang,2003,85(2):245-261.

[26] Cabeza R,Nyberg L. Imaging cognition: an empirical review of PET studies with normal subjects[J].J Cogn Neurosci,1997, 9(1):1-26.

[27] Gallen CC,Sobel DF,Waltz T,et al.Noninvasive presurgical neuromagnetic mapping of somatosensory cortex[J].Neurosurgery, 1993,33(2):260-268.

[28] Roberts TP,Ferrari P,Perry D,et al.Presurgical mapping with magnetic source imaging: comparisons with intraoperative fi ndings[J].Brain Tumor Pathol,2000,17(2):57-64.

[29] Pang EW,Drake JM,Otsubo H,et al.Intraoperative conf i rmation of hand motor area identif i ed preoperatively by magnetoencephalography[J]. Pediatr Neurosurg,2008,44(4):313-317.

[30] Papanicolaou AC,Simos PG,Breier JI,et al. Magnetoencephalographic mapping of the language-specific cortex[J].J Neurosurg,1999, 90(1):85-93.

[31] Cheyne D,Bostan AC,Gaetz W,et al. Event-related beamforming: a robust method for presurgical functional mapping using MEG[J].Clin Neurophysiol,2007,118(8):1691-1704.

[32] Nagarajan S,Kirsch H,Lin P,et al. Preoperative localization of hand motor cortex by adaptive spatial filtering of magnetoencephalography data[J].J Neurosurg,2008,109(2): 228-237.

[33] Knowlton RC,Shih J.Magnetoencephalography in epilepsy[J]. Epilepsia,2004,45(s4):61-71.

[34] Sekihara K,Sahani M,Nagarajan SS.Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction[J].Neuroimage,2005,25(4):1056-1067.

[35] Puce A,Constable RT,Luby ML,et al.Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization[J].J Neurosurg,1995,83(2):262-270.

[36] Roberts TPL,Rowley HA,Zusman E,et al.Brief clinical report:correlation of functional magnetic source imaging with intraoperative cortical stimulation in neurosurgical patients[J].J Image Guid Surg,1995,1(6):339-347.

[37] Cosgrove GR,Buchbinder BR,Jiang H.Functional magnetic resonance imaging for intracranial navigation[J].Neurosurg Clin N Am,1996,7(2):313-322.

[38] Mueller WM,Yetkin FZ,Hammeke TA,et al.Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors[J].Neurosurgery,1996,39(3):515-521.

[39] Pujol J,Conesa G,Deus J,et al. Presurgical identif i cation of the primary sensorimotor cortex by functional magnetic resonance imaging[J].J Neurosurg,1996,84(1):7-13.

[40] Righini A,De DO,Prinster A,et al. Functional MRI: primary motor cortex localization in patients with brain tumors[J].J Comput Assist Tomogr,1996,20(5):702-708.

[41] Lee CC,Ward HA,Sharbrough FW,et al. Assessment of functional MR imaging in neurosurgical planning[J].AJNR Am J Neuroradiol, 1999,20(8):1511-1519.

[42] Krishnan R,Raabe A,Hattingen E,et al. Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome[J].Neurosurgery, 2004,55(4):904-915.

[43] Giussani C,Roux FE,Ojemann J,et al. Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies[J].Neurosurgery,2010,66(1):113-120.

[44] Holodny AI,Schulder M,Liu WC,et al. Decreased BOLD functional MR activation of the motor and sensory cortices adjacent to a glioblastoma multiforme: implications for image-guided neurosurgery[J].AJNR Am J Neuroradiol,1999,20(4):609-612.

[45] Weber B,Wellmer J,Schür S,et al. Presurgical language fMRI in patients with drug-resistant epilepsy: effects of task performance[J]. Epilepsia,2006,47(5):880-886.

[46] Maldjian JA,Gottschalk A,Patel RS,et al. The sensory somato topic map of the human hand demonstrated at 4 Tesla[J].Neuroimage, 1999,10(1):55-62.

[47] Tieleman A,Vandemaele P,Seurinck R,et al. Comparison between functional magnetic resonance imaging at 1.5 and 3 Tesla: effect of increased fi eld strength on 4 paradigms used during presurgical work-up[J].Invest Radiol,2007,42(2):130-138.

[48] Desmond JE,Atlas SW.Task-correlated head movement in fMR imaging: false activations can contaminate results despite motion correction[J].AJNR Am J Neuroradiol,2000,21(8): 1370-1371.

[49] Beisteiner R,Lanzenberger R,Novak K,et al.Improvement of presurgical patient evaluation by generation of functional magnetic resonance risk maps[J].Neurosci Lett,2000,290(1):13-16.

[50] Thacker NA,Burton E,Lacey AJ,et al. The effects of motion on parametric fMRI analysis techniques[J].Physiol Meas,1999, 20(3):251-263.

[51] Hirsch J,Ruge MI,Kim KH,et al.An integrated functional magnetic resonance imaging procedure for preoperative mapping of cortical areas associated with tactile, motor, language, and visual functions[J].Neurosurgery,2000,47(3):711-722.

[52] Deblaere K,Backes W,Hofman P,et al.Developing a comprehensive presurgical functional MRI protocol for patients with intractable temporal lobe epilepsy: a pilot study[J].Neuroradiology,2002, 44(8):667-673.

[53] Drobyshevsky A,Baumann SB,Schneider W.A rapid fMRI task battery for mapping of visual, motor, cognitive, and emotional function[J].Neuroimage,2006,31(2):732-744.

[54] Dimou S,Battisti RA,Hermens DF,et al.A systematic review of functional magnetic resonance imaging and diffusion tensor imaging modalities used in presurgical planning of brain tumour resection[J].Neurosurg Rev,2013,36(2):205-214.

[55] Cox RW,Jesmanowicz A,Hyde JS.Real-Time functional magnetic resonance imaging[J].Magn Reson Med,1995,33(2): 230-236.

[56] M?ller M,Freund M,Greiner C,et al.Real time fMRI: a tool for the routine presurgical localisation of the motor cortex.[J].Eur Radiol,2005,15(2):292-295.

[57] Gasser T,Ganslandt O,Sandalcioglu E,et al.Intraoperative functional MRI: implementation and preliminary experience[J]. Neuroimage,2005,26(3):685-693.

[58] Fernández G,Greiff AD,Oertzen JV,et al.Language mapping in less than 15 minutes: Real-time functional MRI during Routine Clinical Investigation[J].Neuroimage,2001,14(3):585-594.

[59] Biswal B,Zerrin Yetkin F,Haughton VM,et al.Functional connectivity in the motor cortex of resting human brain using echo-planar mri[J].Magn Reson Med,1995,34(4):537-541.

[60] Lee MH,Smyser CD,Shimony JS.Resting state fMRI: A review of methods and clinical applications[J].AJNR Am J Neuroradiol, 2013,34(10):1866-1872.

[61] Rosazza C,Aquino D,D’Incerti L,et al.Preoperative mapping of the sensorimotor cortex: comparative assessment of Task-Based and Resting-State fMRI[J].Plos One,2014,9(6):e98860.

[62] Kokkonen SM,Nikkinen J,Remes J,et al.Preoperative localization of the sensorimotor area using independent component analysis ofresting-state fMRI[J].Magn Reson Imaging,2009,27(6):733-740.

[63] Barker AT,Jalinous R,Freeston IL.Noninvasive magnetic stimulation of the human motor cortex[J].Lancet,1985,1(8437): 1106-1107.

[64] Krings T,Foltys H,Reinges M,et al.Navigated transcranial magnetic stimulation for presurgical planning[J].Minim Invasive Neurosurg,2001,44(4):234-239.

[65] S?is?nen L,K?n?nen M,Julkunen P,et al.Non-invasive preoperative localization of primary motor cortex in epilepsy surgery by navigated transcranial magnetic stimulation[J].Epilepsy Res,2010,92(2-3):134-144.

[66] Picht T,Mularski S,Kuehn B,et al.Navigated transcranial magnetic stimulation for preoperative functional diagnostics in brain tumor surgery[J].Neurosurgery,2009,65(s6):98-99.

[67] Picht T,Schmidt S,Brandt S,et al.Preoperative functional mapping for rolandic brain tumor surgery: comparison of navigated transcranial magnetic stimulation to direct cortical stimulation[J]. Neurosurgery,2011,69(3):581-588.

[68] Krieg SM,Shiban E,Buchmann N,et al.Presurgical navigated transcranial magnetic brain stimulation for recurrent gliomas in motor eloquent areas[J].Clin Neurophysiol,2013,124(3):522-527.

[69] Picht T,Krieg SM,Sollmann N,et al.A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery[J].Neurosurgery,2013,72(5):808-819.

[70] Tarapore PE,Findlay AM,Honma SM,et al.Language mapping with navigated repetitive TMS: Proof of technique and validation[J].Neuroimage,2011,82(1):260-272.

[71] Tarapore PE,Picht T,Bulubas L,et al.Safety and tolerability of navigated TMS for preoperative mapping in neurosurgical patients[J].Clin Neurophysiol,2015,127(3):1895-1900.

[72] Picht T,Frey D,Thieme S,et al.Presurgical navigated TMS motor cortex mapping improves outcome in glioblastoma surgery: a controlled observational study[J].J Neurooncol,2016, 126(3):535-543.

[73] Picht T,Schulz J,Hanna M,et al.Assessment of the inf l uence of navigated transcranial magnetic stimulation on surgical planning for tumors in or near the motor cortex[J].Neurosurgery,2012, 70(5):1248-1257.

[74] Sollmann N,Ille S,Hauck T,et al.The impact of preoperative language mapping by repetitive navigated transcranial magnetic stimulation on the clinical course of brain tumor patients[J]. BMC Cancer,2015,15(1):261.

[75] Haglund MM, Ojemann GA, Hochman DW.Optical imaging of epileptiform and functional activity in human cerebral cortex[J]. Nature,1992,358(6388):668-671.

[76] Prakash N,Uhlemann F,Sheth SA,et al.Current trends in intraoperative optical imaging for functional brain mapping and delineation of lesions of language cortex[J].Neuroimage,2009, 47(1):T116-T126.

[77] Cannestra AF,Blood AJ,Black KL,et al.The evolution of optical signals in human and rodent cortex[J].Neuroimage,1996,3(3 Pt 1): 202-208.

[78] Cannestra AF,Black KL,Martin NA,et al.Topographical and temporal specificity of human intraoperative optical intrinsic signals[J].Neuroreport,1998,9(11):2557-2563.

[79] Shoham D,Grinvald A.The cortical representation of the hand in macaque and human area S-I: high resolution optical imaging[J]. J Neurosci,2001,21(17):6820-6835.

[80] Sato K,Nariai T,Sasaki S,et al.Intraoperative intrinsic optical imaging of neuronal activity from subdivisions of the human primary somatosensory cortex[J].Cereb Cortex,2002,12(3):269-280.

[81] Sato K,Nariai T,Tanaka Y,et al.Functional representation of the finger and face in the human somatosensory cortex: intraoperative intrinsic optical imaging[J].Neuroimage,2005, 25(4):1292-1301.

[82] Nariai T,Senda M,Ishii K,et al.Three-dimensional imaging of cortical structure, function and glioma for tumor resection[J].J Nucl Med,1997,38(10):1563-1568.

[83] Pouratian N,Sicotte N,Rex D,et al.Spatial/temporal correlation of BOLD and optical intrinsic signals in humans[J].Magn Reson Med,2002,47(4):766-776.

[84] Cannestra AF,Bookheimer SY,Pouratian N,et al.Temporal and topographical characterization of language cortices using intraoperative optical intrinsic signals[J].Neuroimage,2000, 12(1):41-54.

[85] Cannestra AF,Pouratian N,Forage J,et al.Functional magnetic resonance imaging and optical imaging for dominant-hemisphere perisylvian arteriovenous malformations[J].Neurosurgery,2004, 55(4):804-814.

[86] Kerr JN,Denk W. Imaging in vivo: watching the brain in action[J]. Nat Rev Neurosci,2008,9(3):195-205.

[87] Duemani Reddy G,Kelleher K,Fink R,et al. Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity[J].Nat Neurosci,2008,11(6):713-720.

[88] Morioka T,Yamamoto T,Mizushima A,et al.Comparison of magnetoencephalography, functional MRI, and motor evoked potentials in the localization of the sensory-motor cortex[J].Neurol Res,1995,17(5):361-367.

[89] Shinoura N,Yamada R,Suzuki Y,et al.Functional magneticresonance imaging is more reliable than somatosensory evoked potential or mapping for the detection of the primary motor cortex in proximity to a tumor[J].Stereotact Funct Neurosurg, 2006,85(2-3):99-105.

[90] Roberts DR,Vincent DJ,Speer AM,et al. Multi-modality mapping of motor cortex: comparing echoplanar BOLD fMRI and transcranial magnetic stimulation[J].J Neural Transm (Vienna),1997,104(8-9): 833-843.

[91] Lotze M,Kaethner RJ,Erb M,et al. Comparison of representational maps using functional magnetic resonance imaging and transcranial magnetic stimulation[J].Clin Neurophysiol,2003, 114(2):306-312.

[92] Forster MT,Hattingen E,Senft C,et al. Navigated transcranial magnetic stimulation and functional magnetic resonance imaging: advanced adjuncts in preoperative planning for central region tumors[J].Neurosurgery,2011,68(5):1317-1325.

[93] Coburger J,Musahl C,Henkes H,et al. Comparison of navigated transcranial magnetic stimulation and functional magnetic resonance imaging for preoperative mapping in rolandic tumor surgery[J].Neurosurg Rev,2013,36(1):65-76.

[94] Babajani-Feremi A,Narayana S,Rezaie R,et al. Language mapping using high gamma electrocorticography, fMRI, and TMS versus electrocortical stimulation[J].Clin Neurophysiol, 2016,127(3):1822-1836.

[95] Dale AM,Liu AK,Fischl BR,et al. Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity[J].Neuron,2000,26(1):55-67.

[96] McDonald CR,Thesen T,Carlson C,et al. Multimodal imaging of repetition priming: using fMRI, MEG, and intracranial EEG to reveal spatiotemporal profiles of word processing[J]. Neuroimage,2010,53(2):707-717.

本文編輯 劉峰

Application and Development of Functional Cortical Mapping in Clinical Research

WEN Jian-bin, LI Xiao-li

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China

Electrical cortical stimulation (ECS) was considered as the “gold standard” of functional cortical mapping, which played an important role in the effect of neurosurgery surgery. With the development of neuroimaging technology and theory, more and more new methods were used in functional cortical mapping of neurosurgery, for example electrocorticography (ECoG), positron emission tomography (PET), functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), transcranial magnetic stimulation (TMS), and optical cortical imaging (OCI). The principle of these technologies were brief l y introduced in this paper, and we compared the present situation of the application of these technologies from clinical reliability, security, detection efficiency, cost and application status respectively. Finally, we made the outlook for the future development of clinical functional cortical mapping technology.

functional cortical mapping; neurosurgery; functional magnetic resonance imaging; transcranial magnetic stimulation; electrocorticography

R44

A

10.3969/j.issn.1674-1633.2017.05.031

1674-1633(2017)05-0116-07

2017-03-16

2017-03-30

國家自然科學(xué)基金面上項目“經(jīng)顱磁刺激誘導(dǎo)的腦節(jié)律挖掘和分析”(61273063)。

李小俚,教授,主要研究方向為神經(jīng)工程。

通訊作者郵箱:xiaoli@bnu.edu.cn

猜你喜歡
功能
拆解復(fù)雜功能
鐘表(2023年5期)2023-10-27 04:20:44
也談詩的“功能”
中華詩詞(2022年6期)2022-12-31 06:41:24
基層弄虛作假的“新功能取向”
深刻理解功能關(guān)系
鉗把功能創(chuàng)新實(shí)踐應(yīng)用
關(guān)于非首都功能疏解的幾點(diǎn)思考
基于PMC窗口功能實(shí)現(xiàn)設(shè)備同步刷刀功能
懷孕了,凝血功能怎么變?
媽媽寶寶(2017年2期)2017-02-21 01:21:24
“簡直”和“幾乎”的表達(dá)功能
中西醫(yī)結(jié)合治療甲狀腺功能亢進(jìn)癥31例
主站蜘蛛池模板: 色精品视频| 亚洲日本在线免费观看| 日韩欧美成人高清在线观看| 不卡国产视频第一页| 奇米影视狠狠精品7777| 国产性爱网站| 美女免费精品高清毛片在线视| 97综合久久| 99久久精品视香蕉蕉| 美女无遮挡免费网站| 最新国产你懂的在线网址| 91福利片| 日韩中文字幕亚洲无线码| 国产微拍精品| 国产精品自在自线免费观看| 日本在线免费网站| 久久婷婷五月综合97色| 一区二区三区精品视频在线观看| 精品久久国产综合精麻豆| 999在线免费视频| 亚洲黄网视频| 国产真实乱子伦精品视手机观看| 亚洲国产一成久久精品国产成人综合| a毛片在线| 黄色成年视频| 最新国产麻豆aⅴ精品无| 亚洲一区波多野结衣二区三区| 国产在线一区二区视频| 玩两个丰满老熟女久久网| 国产免费久久精品99re丫丫一| 波多野结衣一区二区三区四区视频 | 免费在线观看av| 五月天婷婷网亚洲综合在线| 国产一区自拍视频| 国产黄色爱视频| 日本91视频| 国产美女91视频| 国产欧美日韩在线一区| 国产又爽又黄无遮挡免费观看 | 丁香综合在线| 青青操视频免费观看| 91成人免费观看| 91亚洲影院| 欧美精品啪啪| 91午夜福利在线观看| 精品一区国产精品| 亚洲欧美日韩动漫| 国产福利免费视频| 亚洲精品无码久久毛片波多野吉| 在线视频精品一区| 内射人妻无码色AV天堂| 久久婷婷综合色一区二区| 国产精女同一区二区三区久| 538国产在线| 美女被操91视频| 99视频精品全国免费品| 依依成人精品无v国产| 欧美天堂久久| 五月激情婷婷综合| 青青操视频在线| 婷婷六月激情综合一区| 成人自拍视频在线观看| 日韩色图区| аⅴ资源中文在线天堂| 免费久久一级欧美特大黄| 国产福利微拍精品一区二区| 日本91视频| 中文字幕中文字字幕码一二区| 制服丝袜一区| 亚洲三级成人| 潮喷在线无码白浆| 国产在线观看高清不卡| 99re热精品视频国产免费| 国产地址二永久伊甸园| 亚洲成A人V欧美综合天堂| 亚洲欧美综合精品久久成人网| 亚洲手机在线| 老熟妇喷水一区二区三区| 亚洲视频无码| 国产成人91精品免费网址在线| 青青青国产视频手机| 亚洲成a人片|