然姆
“數學為其他科學提供了語言、思想和方法”,“初步學會運用數學的思維方式去觀察、分析現實社會,去解決日常生活中和其他學科學習中的問題”。(小學數學課程標準) 數學思維方法分為兩種,形象思維方法和抽象思維方法。 小學數學要培養學生的形象思維能力,并在此基礎上,為發展抽象思維能力打下堅實的基礎。
什么叫形象思維方法 ?
形象思維方法是指人們用形象思維來認識、解決問題的方法。它的思維基礎是具體形象,并從具體形象展開來的思維過程。 形象思維的主要手段是實物、圖形、表格和典型等形象材料。它的認識特點是以個別表現一般,始終保留著對事物的直觀性。它的思維過程表現為表象、類比、聯想、想象。它的思維品質表現為對直觀材料進行積極想象,對表象進行加工、提煉進而提示出本質、規律,或求出對象。它的思維目標是解決實際問題,并且在解決問題當中提高自身的思維能力。方法主要有以下幾點:
1、實物演示法 。 利用身邊的實物來演示數學題目的條件和問題,及條件與條件,條件與問題之間的關系,在此基礎上進行分析思考、尋求解決問題的方法。 這種方法可以使數學內容形象化,數量關系具體化。比如:數學中的相遇問題。通過實物演示不僅能夠解決“同時、相向而行、相遇”等術語,而且為學生指明了思維方向。再如,在一個圓形(方形)水塘周圍栽樹問題,如果能進行一個實際操作,效果要好得多。 二年級數學教材中,“三個小朋友見面握手,每兩人握一次,共要握幾次手”與“用三張不同的數字卡片擺成兩位數,共可以擺成多少個兩位數”。像這樣的有關排列、組合的知識,在小學教學中,如果實物演示的方法,是很難達到預期的教學目標的。 特別是一些數學概念,如果沒有實物演示,小學生就不能真正掌握。長方形的面積、長方體的認識、圓柱的體積等的學習,都依賴于實物演示作思維的基礎。 所以,小學數學教師應盡可能多地制作一些數學教(學)具,而且這些教(學)具用過后要好好保存,可以重復使用。這樣可以有效地提高課堂教學效率,提升學生的學習成績。
2、圖示法 。 借助直觀圖形來確定思考方向,尋找思路,求得解決問題的方法。圖示法直觀可靠,便于分析數形關系,不受邏輯推導限制,思路靈活開闊,但圖示依賴于人們對表象加工整理的可靠性上,一旦圖示與實際情況不相符,易使在此基礎上的聯想、想象出現謬誤或走入誤區,最后導致錯誤的結果。比如有的數學教師愛徒手畫數學圖形,難免造成不準確,使學生產生誤解。 在課堂教學當中,要多用圖示的方法來解決問題。有的題目,圖畫出來了,結果也就出來的;有的題,圖畫好了,題意學生也就明白了;有的題,畫圖則可以幫助分析題意、啟迪思路,作為其他解法的輔助手段。 例1 把一根木頭鋸成3段需要24分鐘,鋸成6段需要多少分鐘?(圖略) 思維方法是:圖示法。 思維方向是:鋸幾次,每次用幾分鐘。 思路是:鋸3段鋸了幾次,每次用幾分鐘,鋸6段鋸了幾次,需要多少分鐘。 例2 判斷 等腰三角形中,點D是底邊BC的中點,圖甲的面積比圖乙的面積大,圖甲的周長比圖乙的周長長。(圖略) 思維方法:圖示法。 思維方向:先比較面積,再比較周長。 思路:作條輔助線。圖甲占的面積大,圖乙所占面積小,所以“圖甲的面積比圖乙的面積大”是正確的。線段AD比曲線AD短,所以“圖甲的周長比圖乙的周長長”是錯誤的。
3、列表法 。 運用列出表格來分析思考、尋找思路、求解問題的方法叫做列表法。列表法清晰明了,便于分析比較、提示規律,也有利于記憶。它的局限性在于求解范圍小,適用題型狹窄,大多跟尋找規律或顯示規律有關。比如,正、反比例的內容,整理數據,乘法口訣,數位順序等內容的教學大都采用“列表法”。 用列表法解決傳統數學問題:雞兔同籠問題。制作三個表格:第一張表格是逐一舉例法,根據雞與兔共20只的條件,假設雞只有1只,那么兔就有19只,腿共有78條??這樣逐一列舉,直至尋找到所求的答案;第二張表格是列舉了幾個以后發現了只數與腿數的規律,從而減少了列舉的次數;第三張表格是從中間開始列舉,由于雞與兔共20只,所以各取10只,接著根據實際的數據情況確定列舉的方向。
4、探索法 。 按照一定方向,通過嘗試來摸索規律、探求解決問題思路的方法叫做探究法。我國著名數學家華羅庚說過,在數學里,“難處不在于有了公式去證明,而在于沒有公式之前,怎樣去找出公式來。”蘇霍姆林斯基說過:在人的心靈深處,都有一種根深蒂固的需要,這就是希望自己是一個發現者、研究者、探索者,而在兒童的精神世界中,這種需要特別強烈。“學習要以探究為核心”,是新課程的基本理念之一。人們在難以把問題轉化為簡單的、基本的、熟悉的、典型的問題時,常常采取的一種好方法就是探究、嘗試。 第一、探究方向要準確,興趣要高漲,切忌胡亂嘗試或形式主義的探究。學生這時更感到奇怪,異口同聲地說:“老師您快告訴我們吧,您是怎樣算的?”教師說:“其實呀,有一位好朋友在暗中幫助老師,你們知道它是誰嗎?想認識它嗎?”于是引出所要學習的內容“比例尺”。 第二、定向猜測,反復實踐,在不斷分析、調整中尋找規律。 例3 找規律填數。 (1)1、4、 、10、13、 、19; (2)2、8、18、32、 、72、 。 第三,獨立探究與合作探究結合。獨立,有自由的思維時空;合作,可以知識上互補,方法上互相借鑒,不時還能碰撞出智慧的火花。小學數學教學活動中,教師應盡量創設讓學生去探究的情景,創造讓學生去探究的機會,鼓勵有探究精神和習慣的學生。
以上幾點都是為小學數學抽象思維作準備。