侯 林,許晟迪,張柱霞,邵 國*,黃麗華
研究進(jìn)展
Hamartin在低氧/缺血耐受中的作用
侯 林1,3,4,許晟迪1,4,張柱霞1,4,邵 國1,3,4*,黃麗華2*
低氧/缺血是臨床上各系統(tǒng)均廣泛涉及的病理生理過程,同時也是一些極端環(huán)境下人們所無法回避的難題。通常細(xì)胞、組織由于氧氣、能量供給不足會出現(xiàn)一系列的損傷,嚴(yán)重時甚至死亡。但是細(xì)胞、組織在面對這種損傷時并非束手無策,內(nèi)源性防護(hù)機(jī)制可以提高細(xì)胞、組織對低氧/缺血的耐受性。低氧預(yù)適應(yīng)就是調(diào)動細(xì)胞、組織對低氧/缺血的耐受的一種有效現(xiàn)象。低氧預(yù)適應(yīng)是指:預(yù)先給細(xì)胞、組織一個非致死性的低氧/缺血刺激,細(xì)胞、組織對隨后致死性低氧/缺血刺激的耐受性增強(qiáng)[1]。低氧預(yù)適應(yīng)可以通過上調(diào)多種抗氧化酶的表達(dá)來減弱由低氧/復(fù)氧誘導(dǎo)的氧化應(yīng)激反應(yīng)和心臟延遲保護(hù)[2]。早在1986年Murry在研究犬的心臟時根據(jù)對心臟重復(fù)缺血后心臟對缺血損傷的耐受現(xiàn)象的觀察發(fā)現(xiàn)經(jīng)過低氧/缺血預(yù)處理后阻斷犬冠狀動脈40 min所致的心肌梗死范圍與對照組相比減少了75%。之后Agematsu K等人通過實(shí)驗(yàn)研究發(fā)現(xiàn)低氧/缺血對大腦的保護(hù)作用[3]。有研究報道,在缺血/低氧條件下,hamartin對細(xì)胞/組織起到保護(hù)作用[4],這也為臨床上預(yù)防或治療一些低氧/缺血性疾病提供了新的思路。
遺傳疾病結(jié)節(jié)硬化復(fù)合癥(tuberous sclerosis complex, TSC)的發(fā)病是由于腫瘤抑制基因TSC1或TSC2基因突變引起,TSC1基因正常的表達(dá)產(chǎn)物為Hamartin,TSC2基因的表達(dá)產(chǎn)物為Tuberin,通常情況下這兩種產(chǎn)物結(jié)合形成TSC1/TSC2復(fù)合物參與信號通路的調(diào)節(jié)[5]。TSC1基因位于人染色體9q34,轉(zhuǎn)錄產(chǎn)物為8.6 kb的mRNA,其編碼的蛋白質(zhì)hamartin大約為130 kD。研究發(fā)現(xiàn):harmartin蛋白質(zhì)分化程度比較高,人源的與其它哺乳動物基本沒有同源性。它包含一個卷曲螺旋區(qū)域和1 164個氨基酸,沒有明顯的催化區(qū)域;分為C端和N端兩部分,N端為跨膜結(jié)構(gòu)域和tuberin結(jié)合結(jié)構(gòu)域,C端為卷曲螺旋(coiled-coil)結(jié)構(gòu)域、Rho激活結(jié)構(gòu)域和埃茲蛋白/根蛋白/膜突蛋白(ezrin-radixin- moesin, ERM)相互作用結(jié)構(gòu)域[6,7]。TSC1基因在人體大部分組織中均有表達(dá),但是表達(dá)程度不盡相同,其中在大腦海馬區(qū)中表達(dá)較強(qiáng)[8]。
研究發(fā)現(xiàn)TSC基因可影響細(xì)胞周期的進(jìn)程,是細(xì)胞生長和增殖的重要調(diào)節(jié)因子[9,10]。TSC基因是PI3K/Akt/mTOR/S6K信號傳導(dǎo)通路的關(guān)鍵環(huán)節(jié),在許多惡性腫瘤中均可見PISK/Akt/mTOR/S6K信號轉(zhuǎn)導(dǎo)通路的過度活化,PI3K-Akt-mTOR通路作為細(xì)胞內(nèi)非常重要的信號轉(zhuǎn)導(dǎo)途徑,在細(xì)胞的生長、存活、增殖、凋亡、血管生成、自噬等過程中發(fā)揮著極其重要的生物學(xué)功能,該通路的紊亂會引起一系列的疾病,包括癌癥、神經(jīng)病變、自身免疫性疾病和造血型疾病,mTOR是該通路的中央調(diào)節(jié)者,具有多種調(diào)節(jié)功能,能對腫瘤壞死因子、含氧量、生長因子等多種信號分子產(chǎn)生應(yīng)答[11,12]。而TSC1/TSC2復(fù)合物的作用之一就是參與mTOR途徑,抑制mTOR激活酶,使該信號通路的傳導(dǎo)中斷。當(dāng)某些原因使得hamartin或者tuberin表達(dá)缺失時,TSC1/TSC2復(fù)合物抑制mTOR激酶的作用喪失,從而使該信號傳導(dǎo)通路過度激活,導(dǎo)致腫瘤的發(fā)生。有研究發(fā)現(xiàn)hamartin作為靶蛋白可以被上游調(diào)控因子作用改變其結(jié)構(gòu)和功能。例如IKKβ、FIP200可磷酸化或直接結(jié)合于hamartin上以使TSC1/TSC2復(fù)合體解聚,過度激活mTOR通路,導(dǎo)致疾病的發(fā)生[13,14]。此外,TSC復(fù)合物直接作用的下游因子Rheb是一個具有小GTPase活性的蛋白,為細(xì)胞周期進(jìn)程和細(xì)胞生長所必需。Rheb作為TSC復(fù)合物的下游對mTOR正向調(diào)節(jié),與TSC1/TSC2復(fù)合物共同維持mTOR通路的穩(wěn)定[15]。此外,有研究表明TSC復(fù)合物缺失導(dǎo)致的mTORC1過表達(dá)可被神經(jīng)保護(hù)因子谷氨酰胺抑制,從而延長被敲除TSC基因小鼠的壽命,因此推測TSC1/TSC2復(fù)合物在神經(jīng)系統(tǒng)疾病中發(fā)揮重要作用[16]。在低氧狀態(tài)下,mTOR通路可受到兩種機(jī)制的抑制,而這兩種機(jī)制都與TSC復(fù)合物的參與有關(guān)。HIF-、mTOR-及UPR-依賴的信號通路能夠以集成的方式對低氧/缺血形成應(yīng)答,相互影響、共同調(diào)節(jié)下游基因的表達(dá),控制細(xì)胞生存甚至腫瘤發(fā)生和生長[17]。由于低氧導(dǎo)致能量代謝的紊亂,能量代謝調(diào)節(jié)的關(guān)鍵分子腺苷酸活化蛋白激酶(AMPK)的活性發(fā)生改變,磷酸化mTORC1,激活TSC1/TSC2復(fù)合物抑制mTOR通路,減少蛋白翻譯合成、抑制細(xì)胞生長[9, 18]。有些研究者認(rèn)為hamartin缺失導(dǎo)致的血管內(nèi)皮生長因子(VEGF)表達(dá)量的變化可能與mTOR通路的調(diào)節(jié)無關(guān),直接導(dǎo)致肺部淋巴管肌瘤,這可能為低氧/缺血造成的毛細(xì)血管增生提供治療思路,同時說明hamartin可能參與了缺血/缺氧保護(hù)[19]。
DNA甲基化修飾是指在DNA甲基轉(zhuǎn)移酶(DNA methyltransferase, DNMTs)作用下,以S-腺苷甲硫氨酸(S-adenosyl methionine, SAM)為甲基供體,將甲基基團(tuán)轉(zhuǎn)移到胞嘧啶和鳥嘌呤(CpG)二核苷酸的胞嘧啶中5位碳原子上。CpG多集中在基因的啟動子區(qū)和轉(zhuǎn)錄起始區(qū),這些區(qū)域的DNA甲基化能引起染色質(zhì)重構(gòu)并阻礙轉(zhuǎn)錄因子與核酸序列的結(jié)合而抑制基因表達(dá)[20]。正常的DNA甲基化在維持細(xì)胞及機(jī)體的正常功能中發(fā)揮重要作用,而異常的DNA甲基化可能與多種疾病的發(fā)生有關(guān),尤其是與低氧/缺血導(dǎo)致的年齡性相關(guān)慢性疾病。低氧可以誘導(dǎo)去甲基化促進(jìn)多潛能神經(jīng)前體細(xì)胞(mgNPCs)向星形膠質(zhì)細(xì)胞的分化,因此大腦、胚胎等處于高分化條件下的組織處于低氧和高氧環(huán)境分別促進(jìn)和阻礙大腦星形膠質(zhì)細(xì)胞分化發(fā)展[21], 據(jù)此可以推斷在低氧條件下DNA甲基化對細(xì)胞的調(diào)節(jié)起到重要的作用、研究表明,低氧/缺血可造成基因啟動子區(qū)DNA甲基化的變化,這種變化導(dǎo)致組織易受損傷,已經(jīng)證明DNA甲基化的抑制可以賦予組織抗缺血的特性,這可能是保護(hù)/抗凋亡基因的表達(dá)相關(guān)機(jī)制[22,23]。研究發(fā)現(xiàn),復(fù)發(fā)性乳腺癌死亡的病例中,腫瘤組織中hamartin 表達(dá)量低于正常組織,而腫瘤組織中TSC1啟動子區(qū)卻是高甲基化的,這說明啟動子區(qū)甲基化能夠影響hamartin表達(dá)量[24]。通過對編碼hamartin蛋白的TSC1基因啟動子區(qū)進(jìn)行測序發(fā)現(xiàn)其中的CG含量大約60%,其中CpG約占到7%左右,符合CPG島特征,該啟動子區(qū)域的甲基化變化會影響hamartin基因的表達(dá)[25]。DNA甲基化對hamartin在低氧/缺血時的表達(dá)可能會產(chǎn)生一定的影響,因此DNA甲基化變化對于低氧/缺血下hamartin的表達(dá)以及對細(xì)胞的保護(hù)機(jī)制有重要的研究意義。
研究發(fā)現(xiàn)心臟手術(shù)會引起短暫性腦缺血,導(dǎo)致海馬CA1區(qū)神經(jīng)細(xì)胞死亡[26],可見海馬CA1區(qū)對低氧/缺血比較敏感。蛋白質(zhì)組學(xué)分析顯示小鼠海馬CA3區(qū)抵抗缺血損傷與hamartin的表達(dá)有關(guān)。Papadakis等[4]利用大鼠缺血模型研究發(fā)現(xiàn)海馬的CA1區(qū)的神經(jīng)細(xì)胞對低氧/缺血極為敏感,而海馬CA3區(qū)的神經(jīng)細(xì)胞對低氧/缺血較為耐受。但是CA1和CA3區(qū)的神經(jīng)細(xì)胞面對缺血損傷表現(xiàn)出的不同反應(yīng)機(jī)制尚未清楚[27]。進(jìn)一步探究其機(jī)制將對全面了解低氧/缺血條件下細(xì)胞內(nèi)源性保護(hù)機(jī)制地啟動有重要意義。研究發(fā)現(xiàn):TSC1編碼的hamartin蛋白在低氧/缺血條件下可以選擇性誘導(dǎo)海馬區(qū)CA3神經(jīng)源細(xì)胞的發(fā)生,提高神經(jīng)細(xì)胞對低氧/缺血的耐受性。小鼠低/過表達(dá)hamartin模型中發(fā)現(xiàn):抑制hamartin的表達(dá)會增加受損細(xì)胞的死亡,而過表達(dá)hamartin神經(jīng)細(xì)胞通過誘導(dǎo)自噬來抵抗低氧/缺血、低氧/缺血處理時海馬CA3區(qū)hamartin的表達(dá)具有選擇誘導(dǎo)性,通過抑制mTORC1和誘導(dǎo)產(chǎn)生自噬,hamartin促進(jìn)神經(jīng)細(xì)胞的存活。低氧/缺血不影響CA1區(qū)神經(jīng)細(xì)胞hamartin表達(dá),缺血預(yù)適應(yīng)(IPC)處理可以誘導(dǎo)CA1區(qū)神經(jīng)細(xì)胞hamartin表達(dá)上調(diào)并產(chǎn)生神經(jīng)保護(hù),主要是通過誘導(dǎo)自噬作用來產(chǎn)生的。但是低氧下神經(jīng)細(xì)胞內(nèi)源性神經(jīng)保護(hù)機(jī)制還有待于進(jìn)一步深入探索[28]。
近年來對于hamartin的研究已成為熱點(diǎn),逐漸被人們所關(guān)注。隨著研究的不斷深入,hamartin的許多功能也逐漸被發(fā)現(xiàn),一些已經(jīng)在動物實(shí)驗(yàn)中得到了證實(shí),甚至一些已經(jīng)應(yīng)用到臨床治療方面并取得了顯著的效果。通過對hamartin的研究,臨床上人們研究了許多新的療法來代替?zhèn)鹘y(tǒng)療法,并取得了顯著的療效,在應(yīng)對一些頑固的疾病和惡性腫瘤方面,應(yīng)用hamartin也取得了一些突破性的進(jìn)展,這大大提高了人們對疾病的抵抗,提高了人們的生活水平。面對一些極端條件如缺血/低氧等條件下,hamartin對細(xì)胞的保護(hù)作用也將不斷的深入研究,在未來的航天工程,深水作業(yè)等極端環(huán)境下,應(yīng)用hamartin對細(xì)胞的保護(hù)機(jī)制,將解決一個又一個的難題。這將對未來的臨床應(yīng)用和缺血/低氧等極端條件下,細(xì)胞的保護(hù)機(jī)制提供了新的思路。
[1] Bergeron M, Gidday JM, Yu AY, et al. Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain[J].Ann Neurol, 2000, 48(3):285-96.
[2] Huang XS, Chen HP, Yu HH, et al. Nrf2-dependent upregulation of antioxidative enzymes: a novel pathway for hypoxic preconditioning-mediated delayed cardioprotection[J]. Mol Cell Biochem, 2014, 385(1):33-41.
[3] Agematsu K, Korotcova L, Morton PD, et al. Hypoxia diminishes the protective function of white-matter astrocytes in the developing brain[J]. J Thorac Cardiovasc Surg, 2016,151(1):265-72.
[4] Papadakis M, Hadley G, Xilouri M, et al. Tsc1 (hamartin) confers neuroprotection against ischemia by inducing autophagy[J]. Nat Med, 2013, 19(3):351-357.
[5] Prabowo A, Anink J, Lammens M, et al. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation[J]. Brain Pathol, 2013, 23(1):45-59,15.
[6] de Vries PJ. Targeted treatments for cognitive and neurodevelop-mental disorders in tuberous sclerosis complex[J]. Neurother-apeutics, 2010, 7(3):275-282.[7] Santiago Lima AJ, Hoogeveen-Westerveld M, Nakashima A, et al. Identification of regions critical for the integrity of the TSC1-TSC2-TBC1D7 complex[J]. PLoS One, 2014, 9(4):e93940.
[8] Way SW, Rozas NS, Wu HC, et al. The differential effects of prenatal and/or postnatal rapamycin on neurodevelopmental defects and cognition in a neuroglial mouse model of tuberous sclerosis complex[J]. Hum Mol Genet, 2012, 21(14):3226-3236.
[9] Huang J, Manning BD. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth[J]. Biochem J, 2008, 412(2):179-90.
[10] Amcheslavsky A, Ito N, Jiang J, et al. Tuberous sclerosis complex and Myc coordinate the growth and division of Drosophila intestinal stem cells[J]. J Cell Biol, 2011, 193(4):695-710.
[11] Zhang L, Xing D, Gao X, et al. Low-power laser irradiation promotes cell proliferation by activating PI3K/Akt pathway[J]. J Cell Physiol, 2009, 219(3):553-562.
[12] Jiang J, Zhang Y, Guo Y, et al. MicroRNA-3127 promotes cell proliferation and tumorigenicity in hepatocellular carcinoma by disrupting of PI3K/AKT negative regulation[J]. Oncotarget, 2015, 6(8):6359-6372.
[13] Lee DF, Kuo HP, Chen CT, et al. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway[J]. Cell, 2007, 130(3):440-455.
[14] Magri L, Galli R. mTOR signaling in neural stem cells: from basic biology to disease[J]. Cell Mol Life Sci, 2012, 70(16):2887-2898.
[15] Mazhab-Jafari MT, Marshall CB, Ho J, et al. Structure-guided mutation of the conserved G3-box glycine in Rheb generates a constitutively activated regulator of mammalian target of rapamycin (mTOR)[J]. J Biol Chem, 2014, 289(18):12195-12201.
[16] Feliciano DM, Su T, Lopez J, et al. Single-cell Tsc1 knockout during corticogenesis generates tuber-like lesions and reduces seizure threshold in mice[J]. J Clin Invest, 2011, 121(4):1596-1607.
[17] Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer[J]. Nat Rev Cancer, 2008, 8(11):851-864.
[18] Laplante M, Sabatini DM. mTOR signaling in growth control and disease[J]. Cell, 2012, 149(2):274-293.
[19] Neuman NA, Henske EP. Non-canonical functions of the tuberous sclerosis complex-Rheb signalling axis[J]. EMBO Mol Med, 2011, 3(4):189-200.[20] 姚志剛, 秦川. 表觀遺傳修飾在學(xué)習(xí)和記憶中的調(diào)節(jié)作用[J]. 中國實(shí)驗(yàn)動物學(xué)報, 2011, 19(5):441-445.
[21] 李林,李珂,何虹,等.食源性肥胖大鼠下丘腦Tsc1啟動子區(qū)甲基化率、mTOR表達(dá)變化[J].四川大學(xué)學(xué)報醫(yī)學(xué)版,2015,46(1):47-50.
[22] Xiong F, Lin T, Song M, et al. Antenatal hypoxia induces epigenetic repression of glucocorticoid receptor and promotes ischemic-sensitive phenotype in the developing heart[J]. J Mol Cell Cardiol, 2016, 91:160-171.
[23] Kumral A, Tuzun F, Yesilirmak D, et al. Role of epigenetic regulatory mechanisms in neonatal hypoxic-ischemic brain injury[J]. Early Hum Dev, 2009, 72(6):692-693.
[24] Jiang WG, Sampson J, Martin TA, et al. Tuberin and hamartin are aberrantly expressed and linked to clinical outcome in human breast cancer: the role of promoter methylation of TSC genes[J]. Eur J Cancer, 2005, 41(11):1628-1636.
[25] Takamochi K, Ogura T, Yokose T, et al. Molecular analysis of the TSC1, gene in adenocarcinoma of the lung[J]. Lung Cancer, 2004, 46(3):271-281.
[26] Deng G, Yonchek JC, Quillinan N, et al. A novel mouse model of pediatric cardiac arrest and cardiopulmonary resuscitation reveals age-dependent neuronal sensitivities to ischemic injury[J]. J Neurosci Methods, 2013, 222(1):34-41.
[27] Patrylo PR, Williamson A.The effects of aging on dentate circuitry and function[J]. Prog Brain Res, 2007, 163(163):679-696.[28] Hadley G, De Luca GC, Papadakis M, et al. Endogenous neur-oprotection: hamartin modulates an austere approach to staying alive in a recession[J]. Int J Stroke, 2013, 8(6):449-450.
(1.包頭醫(yī)學(xué)院生物醫(yī)學(xué)研究中心基礎(chǔ)醫(yī)學(xué)部,包頭醫(yī)學(xué)院神經(jīng)科學(xué)研究所,內(nèi)蒙古自治區(qū) 包頭 014010; 2.包頭醫(yī)學(xué)院公共衛(wèi)生學(xué)院,內(nèi)蒙古自治區(qū) 包頭 014010; 3.首都醫(yī)科大學(xué),宣武醫(yī)院,低氧適應(yīng)轉(zhuǎn)化醫(yī)學(xué)北京市重 點(diǎn)實(shí)驗(yàn)室,北京 100053; 4.內(nèi)蒙古自治區(qū)低氧轉(zhuǎn)化醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室,內(nèi)蒙古自治區(qū) 包頭 014010)
低氧/缺血是臨床上常見的基本病理過程和基本死因,同時也是高原、航天、潛水等極端環(huán)境所面臨的基本問題。作為細(xì)胞內(nèi)源性保護(hù)分子,hamartin能夠提高細(xì)胞在急性低氧/缺血時的耐受性,具有重要的研究意義。Hamartin在低氧/缺血中的作用已成為研究熱點(diǎn),闡明其在低氧/缺血中的保護(hù)作用及其DNA甲基化對低氧/缺血的影響,不僅有利于減輕低氧/缺血的損傷,還可以進(jìn)一步探討hamartin及其DNA甲基化在其他病理生理中的作用,為后續(xù)的臨床研究提供理論指導(dǎo)。本文對hamartin的結(jié)構(gòu)、信號傳導(dǎo)機(jī)制以及在低氧/缺血中的研究進(jìn)行綜述。
Hamartin;低氧/缺血;甲基化
The role of hamartin in ischemia/hypoxia tolerance
HOU Lin1,3,4, XU Sheng-di1,4, ZHANG Zhu-xia1,4, SHAO Guo1,3,4*, HUANG Li-hua2*
(1.Biomedicine Research Center and Basic Medical Department, Neuroscience Institute, Baotou Medical College, Baotou 014010,China; 2.Public Health Department, Baotou Medical College, Baotou 014010; 3.The Key Laboratory of Beijing, Hypoxic Preconditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053; 4.Inner Mongolia Key Laboratory of Hypoxia Translational Medicine, Baotou Medical College, Baotou, Inner Mongolia 014010)
Hypoxia/ischemia is a common clinical pathophysiological process and cause of death,and it is a common problem in extreme conditions such as high altitude,astronautics and diving.Hamartin is a kind of effective endogenous neuroprotectant and could increase cell tolerance to acute hypoxia or ischemia, thus,is of significance to research.The role of hamartin in hypoxia/ischemia has been a research focus of many scientists.Elucidating the related protective effect and its DNA methylation on hypoxia/ischemia can not only reduce injury,but also lay a basic for further studying the role of hamartin and its DNA methylation in other pathophysiological processes and provide theoretical guidance for the following clinical study.In this paper,we review the structure,mechanism and role of hamartin and the effect of its DNA methylation on hypoxia/ischemia.
Hamartin; Hypoxia/Ischemia; Methylation
國家自然科學(xué)基金(81460283,81660307);內(nèi)蒙古自然科學(xué)基金(2016MS(LH)0307,2014MS0810);包頭醫(yī)學(xué)院博士基金(BSJJ201621, BSJJ201617)。
侯林(1992-),男,碩士研究生,專業(yè):公共衛(wèi)生與預(yù)防醫(yī)學(xué)。E-mail: holy.lin@foxmail.com
邵國,男,教授,研究方向:神經(jīng)生物學(xué)。E-mail: shao_guo_china@163.com;黃麗華,女,副教授,研究方向:神經(jīng)毒理學(xué)。E-mail:huanglihua858@163.com
R-33
A
1671-7856(2017) 08-0085-04
10.3969.j.issn.1671-7856. 2017.08.017
2016-12-13