999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Calix[4]Crowns類化合物在分離銫中的應(yīng)用

2017-12-21 01:03:33董志敏黃永標(biāo)張志賓王有群曹小紅劉云海
濕法冶金 2017年6期

董志敏,黃永標(biāo),張志賓,3,王有群,3,戴 熒,3,曹小紅,3,劉云海,3

(1.東華理工大學(xué) 化學(xué)生物與材料科學(xué)學(xué)院,江西 南昌 330013; 2.廣東省清遠(yuǎn)市公安局刑警支隊(duì),廣東 清遠(yuǎn) 511518; 3.東華理工大學(xué) 核資源與環(huán)境省部共建國家重點(diǎn)實(shí)驗(yàn)室培育基地,江西 南昌 330013)

Calix[4]Crowns類化合物在分離銫中的應(yīng)用

董志敏1,黃永標(biāo)2,張志賓1,3,王有群1,3,戴 熒1,3,曹小紅1,3,劉云海1,3

(1.東華理工大學(xué) 化學(xué)生物與材料科學(xué)學(xué)院,江西 南昌 330013; 2.廣東省清遠(yuǎn)市公安局刑警支隊(duì),廣東 清遠(yuǎn) 511518; 3.東華理工大學(xué) 核資源與環(huán)境省部共建國家重點(diǎn)實(shí)驗(yàn)室培育基地,江西 南昌 330013)

Calix[4]Crowns類化合物作為超分子識(shí)別材料能夠有效地分離銫,并能很好地應(yīng)用在溶劑萃取、液膜萃取、色譜分離等領(lǐng)域。介紹了Calix[4]Crowns類化合物及其復(fù)合超分子材料對(duì)銫離子的識(shí)別和分離效果,為尋求對(duì)Cs(Ⅰ)有優(yōu)異配合能力的Calix[4]Crowns類有機(jī)配體結(jié)構(gòu)及相應(yīng)的功能材料提供參考。

Calix[4]Crowns類化合物;溶劑萃取;色譜分離;Cs(Ⅰ)

杯[4]芳烴冠醚類化合物(Calix[4]Crowns)通常由杯芳烴的酚醛氧和聚醚鏈結(jié)合而成,組分是杯芳烴(Calix[4]arenes)和冠醚[1-2],其中的大環(huán)是連接官能團(tuán)的分子主鏈,側(cè)鏈上酚醛空腔與堿金屬陽離子相連,酚醛氧原子或有機(jī)分子通過CH—π或π—π鍵相連。盡管冠醚可絡(luò)合金屬離子,但杯芳冠醚的構(gòu)型存在錐形、部分錐形、1,2-交替、1,3-交替等4種構(gòu)型,不同構(gòu)型對(duì)不同金屬離子表現(xiàn)出不同的選擇性。特別是,1,3-交替構(gòu)型杯[4]芳烴冠-6衍生物能與Cs(Ⅰ)形成1∶1復(fù)合物,表現(xiàn)出較高的選擇性,因此,能夠很好地去除核廢液中的Cs(Ⅰ)[3-4]。利用這些衍生物,通過溶劑萃取法可得到超過104和102的Cs/Na和Cs/K選擇比[5]。

PUREX流程是傳統(tǒng)的后處理流程,可將約99.3%的U和Pu分離并回收,但仍存在很大的局限性[6],其放射性廢物毒性僅降低一個(gè)數(shù)量級(jí),還存在許多毒性大、對(duì)環(huán)境污染嚴(yán)重的放射性核素,如135Cs、137Cs、90Sr、237Np、241Am、245Cm和99Tc等(含有這些元素的溶液稱為高放廢液(HLLW))[7]不能有效去除。其中,90Sr和137Cs半衰期分別是29、30年,兩者皆為釋熱元素,在存儲(chǔ)過程中容易破壞玻璃固化體,可能導(dǎo)致廢液泄露[8]。135Cs半衰期長達(dá)2.3×106年,且容易遷移,是影響固化體安全處置的最危險(xiǎn)元素之一[9]。若能將其分離,不但能減小玻璃固化體體積、縮短冷卻時(shí)間和儲(chǔ)存年限,還能簡(jiǎn)化地質(zhì)處置工藝、節(jié)約成本[10-11]。因此,如何安全有效分離HLLW中的Cs(Ⅰ)是世界核能發(fā)展領(lǐng)域富有挑戰(zhàn)性的課題之一。

目前,分離Cs(Ⅰ)的常用方法有溶劑萃取法(CSSX和NG-CSSX)[12-13]、色譜分離法(MAREC和SPEC)[14-15]、沉淀法[16-17]、離子交換法[18-19],以及多種方法的綜合,而基于Calix[4]Crowns的識(shí)別材料對(duì)Cs(Ⅰ)有超強(qiáng)的識(shí)別能力,將Calix[4]Crowns及其復(fù)合材料用于處理HLLW,已開發(fā)的方法有溶劑萃取法、液膜萃取法和色譜分離法等。

1 溶劑萃取法

溶劑萃取法在近20年受到廣泛關(guān)注[20-21]。在分離Cs(Ⅰ)過程中,超分子識(shí)別配體與杯[4]芳烴生成類似于“籃子”的主-配體配合物。杯芳烴只有在堿性條件下通過陽離子交換才能對(duì)Cs(Ⅰ)表現(xiàn)出良好的選擇性,而在酸性條件下一般沒有響應(yīng),因此這也限制了其作為萃取劑在分離放射性核素Cs(Ⅰ)方面的應(yīng)用。但一種基于杯[4]芳烴的衍生物杯[4]芳烴冠醚化合物能夠在酸性條件下對(duì)堿金屬和堿土金屬表現(xiàn)出很好的親和性[22-23]。杯[4]芳烴冠醚的選擇性取決于冠醚環(huán)的大小、構(gòu)型、下沿取代基等。杯[4]芳烴-冠-4對(duì)堿金屬離子Na(Ⅰ)的選擇性最好[24],杯[4]芳烴-冠-5對(duì)堿金屬離子K(Ⅰ)的選擇性最好[25],杯[4]芳烴-冠-6對(duì)堿金屬離子Cs(Ⅰ)的選擇性最好[26],表明隨冠醚環(huán)上氧原子數(shù)增加,杯[4]芳烴冠醚對(duì)半徑更大的堿金屬離子的選擇性更大。,3交替構(gòu)象比其他3種構(gòu)象的Calix[4]arene-crown-6在萃取過程中對(duì)銫的識(shí)別能力和選擇性更好。

雙烷氧基杯[4]芳烴-冠-6下沿的酚羥基被烷基鏈取代,雖然降低了其在水中的溶解度,增大了對(duì)Cs(Ⅰ)的萃取容量,但Cs(Ⅰ)相對(duì)于Rb(Ⅰ)或K(Ⅰ)的分離系數(shù)卻有所降低[3]。然而,下沿取代基不同的雙烷氧基杯[4]芳烴-冠-6(如圖1所示)對(duì)Cs(Ⅰ)的配位能力和選擇萃取能力有很大影響。E.Chidini等[27]研究認(rèn)為,當(dāng)杯[4]芳烴-單冠-6下沿羥基被甲基取代時(shí),由于構(gòu)象不穩(wěn)定易發(fā)生翻轉(zhuǎn),導(dǎo)致對(duì)Cs(Ⅰ)的選擇性和識(shí)別能力都不高。U.Rocco等[28]研究表明:不同的取代基(如正辛基、正丙基和異丙基)分別取代杯[4]芳烴-單冠-6下沿羥基,隨烷基鏈增長,材料對(duì)Cs(Ⅰ)的萃取率沒有很大提高,但分離系數(shù)卻大幅提高;當(dāng)取代基的碳原子數(shù)相同時(shí),具有支鏈烷基比直鏈烷基的化合物對(duì)Cs(Ⅰ)的萃取率和分離系數(shù)都要高。

相比于杯[4]芳烴-單冠-6,杯[4]芳烴-雙冠-6具有2個(gè)冠醚橋聯(lián)。理論上,杯[4]芳烴雙冠-6與Cs(Ⅰ)的絡(luò)合比為2∶1,但研究表明,Cs(Ⅰ)與杯[4]芳烴-雙冠-6是通過與相鄰的2個(gè)苯環(huán)上的π電子發(fā)生作用,還與其中1個(gè)冠醚環(huán)上的6個(gè)氧進(jìn)行配位,從而使另一側(cè)的冠醚環(huán)結(jié)構(gòu)發(fā)生扭轉(zhuǎn),使其不再是一個(gè)適合Cs(Ⅰ)配位的構(gòu)象,導(dǎo)致金屬離子與杯[4]芳烴-雙冠-6的配位比小于2。在冠醚環(huán)上引入2,3-萘基或1,2-亞苯基后,冠醚環(huán)的剛性得到提高,能夠阻礙冠醚環(huán)與更小半徑金屬離子的配位,使其對(duì)Cs(Ⅰ)的萃取容量提高及Cs(Ⅰ)/Na(Ⅰ)分離系數(shù)提高[29]。

圖1 不同取代基二烷氧基杯[4]芳烴-冠-6的化學(xué)結(jié)構(gòu)

N.Simon等[30-31]認(rèn)為,基于雙烷氧基的杯[4]芳烴-冠-6對(duì)Cs(Ⅰ)有良好的選擇萃取性,因此,提出了CCCEX(Cesium Separation by Calix-Crown Extraction)流程(如圖2所示),并研究了2種不同取代基的雙烷氧基杯[4]芳烴-冠-6體系在高放廢液中對(duì)Cs(Ⅰ)的萃取。結(jié)果表明:以1,3-[(2,4-二乙基-庚基乙氧基)氧]-2,4-冠-6-杯[4]芳烴為萃取劑、甲基辛基-2-二甲基丁酸胺為修飾劑、TPH為稀釋劑和以l,3-二辛氧基-2,4-冠-6-杯[4]芳烴為萃取劑、四丙基氫為稀釋劑、磷酸三丁酯為修飾劑的2個(gè)體系對(duì)Cs(Ⅰ)的萃取率均高于99%,表明CCCEX流程是可行的。

圖2 CCCEX流程

美國橡樹嶺國家實(shí)驗(yàn)室(ORNL)[32]基于杯[4]芳烴-雙(叔辛基苯并-冠-6)(BOB CalixC6)在堿性溶液中對(duì)Cs(Ⅰ)具有良好選擇識(shí)別性,提出了CSSX(Caustic-Side Solvent-Extraction)流程,后又提出溶劑萃取Cs(Ⅰ)流程(CSEX),選取BOB Calix[4]C6作萃取劑,1-(2,2,3,3-四氟丙氧基)-3-(4-叔辛基酚)-2-丙醇(Cs-3)作修飾劑,用于從模擬SRS堿性高放廢液中萃取Cs(Ⅰ)。但修飾劑Cs-3在52 ℃的SRS模擬堿性高放廢液中存放15 d后有近40%發(fā)生溶解,穩(wěn)定性較差,而且在萃取過程中容易形成第三相[33]。為了提高流程中杯芳雙冠對(duì)Cs(Ⅰ)的萃取率,ORNL合成了5種性質(zhì)穩(wěn)定且適用于作有機(jī)溶劑修飾劑的烷基酚氧基氟化醇類物質(zhì),比較其有效性后發(fā)現(xiàn),5種修飾劑中,1-(2,2,3,3-四氟丙氧基)-3-(4-仲丁基酚)-2-丙醇(Cs-7SB)最適合用于CSSX流程[34]。CSSX流程(試劑見表1)中的有機(jī)相組成為:萃取劑BOBCalix[4]C6,修飾劑Cs-7SB,抑制劑三正辛胺(TOA),稀釋劑LIX79[35]。采用該流程,Cs(Ⅰ)分離凈化系數(shù)可達(dá)4 000[12]。萃取劑組成可稍微調(diào)整,如為進(jìn)一步優(yōu)化流程對(duì)Cs(Ⅰ)的識(shí)別能力,可選取MaxCalix[4]C6作萃取劑,因其具有良好的溶解性,可代替BOBCalix[4]C6和BEHB Calix[4]C6。該流程被稱為NG-CSSX,其對(duì)Cs(Ⅰ)的萃取容量遠(yuǎn)高于CSSX流程,因?yàn)橐种苿㏕iDG較TOA具有更好的熱穩(wěn)定性[36]。

表1 溶劑萃取流程CSSX和NG-CSSX的組成比較

裂變產(chǎn)物的萃取(FPEX)可選取雙-叔丁基環(huán)己基-18-冠-6(DtBuCH18C6)和杯[4]芳烴-雙(叔辛基苯并-冠-6)(BOBCalix[4]C6)作萃取劑,可同時(shí)分離Cs(Ⅰ)和Sr(Ⅱ),對(duì)Cs(Ⅰ)和Sr(Ⅱ)的去除率均能達(dá)99.9%[37-38]。

2 液膜萃取法

液膜萃取法分離效率高、選擇性好,設(shè)備簡(jiǎn)單、占地面積小,液膜比表面積大、厚度小,能夠同時(shí)進(jìn)行萃取、反萃取,但液膜不夠穩(wěn)定,使用時(shí)間短。

P.Kandwal等[39-40]研究了中空纖維支撐杯[4]-雙(萘并)冠-6作為萃取劑回收高放射性廢物中的銫離子。以正十二烷和鄰硝基苯辛醚混合液作為稀釋劑,硝酸銫溶液酸度為3 mol/L硝酸,水為洗脫劑。結(jié)果表明:膜傳質(zhì)系數(shù)為5.24×10-6cm/s,膜傳質(zhì)速度為傳輸Cs(Ⅰ)的主要控制步驟;在6 h內(nèi)可回收溶液中99.9%以上的銫離子,在12 h內(nèi)傳輸溶液中88%的銫離子;利用NaOH溶液和洗脫相的酸度,回收溶液中95%的銫離子是可能的。P.Jagasia等[41]研究了4種Calix-冠-6液膜在氟化稀釋劑、苯基三氟甲基砜中對(duì)銫的萃取。其中,4種液膜傳質(zhì)速率不同,但總體來說都比相應(yīng)的Calix-冠-6在硝基苯或鄰硝基苯辛醚與正十二烷混合物中的傳輸速率快,分離效果好;但液膜的穩(wěn)定性很短,5 d后傳輸效率明顯降低。利用中空纖維支撐液膜作支撐體(HFSLM)[42],雙(辛氧基)-杯[4]芳烴-冠-6(CMC)作萃取劑,分離酸性溶液中的放射性Cs(Ⅰ),在4 mol/L硝酸溶液中,HFSLM能在2 h內(nèi)傳輸Cs+質(zhì)量濃度為0.32 g/L的溶液300 mL,表明CMC在中空纖維中可以作為接觸器來分離放射性廢液中的銫,但負(fù)載量較低,有待進(jìn)一步研究。

3 色譜萃取分離法

相比于傳統(tǒng)的溶劑萃取法,色譜萃取法不僅具有設(shè)備簡(jiǎn)單、流程簡(jiǎn)單、成本低等優(yōu)點(diǎn),而且還兼有溶劑萃取法的高選擇性及柱色譜法的簡(jiǎn)單多級(jí),能夠有效減少處理放射性廢液過程中產(chǎn)生的廢液量等優(yōu)點(diǎn),對(duì)后處理過程中分離銫和一些特定的裂變產(chǎn)物非常有利。

色譜分離法的色譜固定相一般是通過物理浸漬或化學(xué)接枝法將冠醚負(fù)載到固相載體上。最常用的載體包括硅膠、大孔樹脂、介孔硅和大孔二氧化硅等。

1)硅膠。基于硅膠表面的多孔構(gòu)造,將功能化合物通過物理或化學(xué)反應(yīng)固定在多孔硅膠中,不僅能夠加快溶液中金屬離子擴(kuò)散進(jìn)入吸附劑的速率,而且還能提高吸附效率。G.Arena等[43]選取氯鉑酸催化杯[4]芳烴-冠-5、杯[4]芳烴-冠-6,分別與三乙氧基硅烷發(fā)生縮聚反應(yīng)得到硅烷化杯芳冠醚,然后用其作為色譜固相分離高放廢液中的Cs(Ⅰ)。結(jié)果表明:在以水/甲醇(80/20)作為流動(dòng)相、流速為0.2 mL/min的色譜柱中,單臂杯芳冠醚硅膠色固相能夠完全分離Cs(Ⅰ)與Na(Ⅰ);但分離Cs(Ⅰ)與K(Ⅰ)的效果不好。合成的單臂杯芳烴冠醚硅膠雖產(chǎn)率高,但單臂長鏈柔性比較大,杯芳冠醚化合物容易纏繞在一起,降低了其在硅膠中的有效含量;而且,導(dǎo)致杯芳冠醚化合物構(gòu)象發(fā)生旋轉(zhuǎn),進(jìn)而降低了對(duì)其他離子的分離系數(shù)。L.L.Tavlarides等[44]同樣通過溶膠-凝膠法將硅烷類前驅(qū)體在酸催化作用下與烷氧基硅發(fā)生聚合反應(yīng)得到杯[4]芳烴-苯并-冠-6/硅膠和杯[4]芳烴-冠-6/硅膠2種色譜固定相,對(duì)Cs(Ⅰ)的吸附分配系數(shù)(Kd)分別為9.5 cm3/g和12.5 cm3/g。杯[4]芳烴-雙冠-6與硅膠以化學(xué)鍵方式結(jié)合,杯[4]芳烴-雙冠-6從吸附劑中溶解進(jìn)入水相中的量較低,但杯[4]芳烴-雙冠-6在硅膠中的排列較混亂,使得預(yù)組織成無序的聚集體,這使其吸附分配系數(shù)低于物理方法合成的色譜固定相。硅膠的優(yōu)點(diǎn)是來源豐富、與識(shí)別材料負(fù)載方便,但硅膠通常顆粒較小,萃取時(shí)柱內(nèi)壓力較大,不利于分離。

2)大孔高分子樹脂。大孔高分子樹脂一般為聚乙烯、聚丙烯、聚苯乙烯等惰性聚合物,常用作固定相載體。A.S.Khan等[45]采用二環(huán)己基-18-冠-6(DCH18C6)與聚氨酯泡沫體物理復(fù)合得到萃取色譜樹脂,用其填充色譜柱并分離Na+、Cs+、Rb+、K+,在4×10 mmol/L三硝基苯酚有機(jī)相中,萃取色譜樹脂對(duì)堿金屬(Na+∶Cs+∶Rb+∶K+)的分配系數(shù)比為 1∶3∶21∶40。〗M.L.Dietz等[46]將50 mmol/L BC6B溶解在二氯甲烷溶劑中并灌入到ArnberehromCG-7lm樹脂中制備出冠醚色譜樹脂,其負(fù)載量達(dá)40%,用其萃取分離Cs(Ⅰ),最佳酸度為2 mol/L,吸附分配系數(shù)超過100 cm3/g,能夠有效地選擇性分離Cs(Ⅰ)。Xiao C.L.等[47]合成了一種新型大孔聚合物基BiPCalix[4]C6超分子識(shí)別材料BiPCalix[4]C6/XAD-7,通過真空浸漬和共聚作用將BiPCalix[4]C6浸漬和固定到大孔XAD-7顆粒孔道中。BiPCalix[4]C6/XAD-7在含有典型裂變和非裂變產(chǎn)物,如Ru(Ⅲ)、Mo(Ⅵ)、K(Ⅰ)、Rb(Ⅱ)、Sr(Ⅱ)、Ba(Ⅱ)、La(Ⅲ)和Y(Ⅲ)中選擇性吸附Cs(Ⅰ),其吸附Cs(Ⅰ)的最佳酸度為4.0 mol/L HNO3,分配系數(shù)為20.63 cm3/g。除對(duì)銣的分配系數(shù)為4.64 cm3/g外,對(duì)其他金屬離子的分配系數(shù)皆低于1.35 cm3/g,表明BiPCalix[4]C6/XAD-7對(duì)銫具有非常好的選擇性。但在分離Cs(Ⅰ)之前,HLLW的酸度要用硝酸調(diào)為4.0 mol/L,這會(huì)導(dǎo)致放射性廢液量增加。Yi R.等[48]通過丙烯醛基杯[4]冠-6與丙烯酰胺類物質(zhì)發(fā)生聚合反應(yīng)得到PNIPAM-cl-calixcrown,這種水凝膠微球?qū)s(Ⅰ)的選擇系數(shù)分別為f(Cs/K)=20.0,f(Cs/Na)=34.0,在真正的海水中對(duì)Cs(Ⅰ)的去除率可達(dá)93.5%。

3)介孔硅。用F108作模板劑合成的介孔硅具有較大的比表面積、體積及有序的孔道,是具有優(yōu)異性能的固體吸附劑基體。此外,有序介孔硅可用作固定支撐配體分子,不改變配體分子對(duì)捕獲目標(biāo)活性金屬離子的功能。

高選擇性配體固化介孔硅因比表面積大、孔容大、吸附容量大、吸附時(shí)間短和可多次重復(fù)使用而備受關(guān)注。介孔硅通過結(jié)合配體形成功能化納米吸附劑,能有效分離和去除目標(biāo)離子。冠醚被廣泛用于萃取分離Cs(Ⅰ),分離過程主要基于Cs(Ⅰ)離子半徑與冠醚配體的空腔尺寸相適應(yīng),且冠醚的苯環(huán)與陽離子發(fā)生π電子作用。但高成本和易產(chǎn)生嚴(yán)重二次污染是溶劑萃取分離銫的最大障礙。因此,用大環(huán)配體的雙苯并-18-冠-6(DB18C6)固化介孔硅制備新型螯合吸附劑,試驗(yàn)結(jié)果表明:溶液pH在5.5~7.0范圍內(nèi)對(duì)吸附劑吸附Cs(Ⅰ)有影響;螯合吸附劑對(duì)Cs(Ⅰ)的最大吸附容量可達(dá)50.23 mg/g,遠(yuǎn)高于介孔硅對(duì)Cs(Ⅰ)的最大吸附容量27.40 mg/g[49];利用0.2 mol/L HCl溶液對(duì)吸附后的材料進(jìn)行洗脫,洗脫率可達(dá)99.1%。M.R.Awual等[50]將DB24C8負(fù)載到有序介孔硅中,合成后的材料10 mg在25 ℃下對(duì)10 mL、0.015 mmol/L Cs+溶液的最佳吸附pH為7.0,吸附容量為70 mg/g,可實(shí)現(xiàn)對(duì)溶液中Cs+的完全去除。該材料有望應(yīng)用于諸如福島核事故泄露的放射性廢液中的快速和高選擇性去除Cs(在25 ℃下)。

4)大孔二氧化硅。Wei Y.Z.等[51]首次采用物理真空復(fù)合法將HDEHP和Cyanex301負(fù)載到大孔硅基SiO2-P中,獲得HDEHP/SiO2-P和Cyanex 301/SiO2-P材料,并用以分離高放廢液中的Ln(Ⅲ)、Am(Ⅲ)和Cm(Ⅲ)。結(jié)果表明:HDEHP/SiO2-P在0~1 mol/L HNO3溶液中的f(Am/Ln)僅僅為10,很難用于萃取色譜法;而Cyanex301/SiO2-P在pH為4~4.5范圍內(nèi)的f(Am/Ln)可達(dá)1 000,能選擇性分離Am(Ⅲ)。Zhang A.Y.等[52]采用相同方法將Calix[4]arene-R14與SiO2-P復(fù)合獲得超分子識(shí)別材料,用此材料從HLLW中分離Cs(25 ℃),其最佳酸度為4.0 mol/L HNO3,分配系數(shù)為50.46 cm3/g。

Chai Z.[15]分別將Calix[4]arene-R14和DtBuCH18C6與SiO2-P復(fù)合,制備出新型大孔硅基(杯芳)冠醚超分子識(shí)別材料,提出SPEC萃取色譜分離流程(Strontium/Cesium Partitioning from HLW by Extraction Chromatography),應(yīng)用于HLLW中Cs(Ⅰ)和Sr(Ⅱ)的分離。試驗(yàn)結(jié)果表明,在(Calix[4]arene-R14+M)/SiO2-P和(DtBuCH18C6+M)/SiO2-P填充塔中,加入金屬離子溶液酸度為4 mol/L硝酸溶液,以水作洗脫液,Cs(Ⅰ)和Sr(Ⅱ)的回收率分別為100.5%、99.6%;將CalixBNaphC負(fù)載到SiO2-P中,提出PCEC萃取色譜分離流程(Partitioning of Cesium by Extraction Chromatography),用以吸附分離HLLW中的Cs(Ⅰ)[53]。試驗(yàn)結(jié)果表明,以水作洗脫劑,經(jīng)過6次吸附—解吸,Cs(Ⅰ)去除率超過99.1%。因?yàn)镃s(Ⅰ)與冠醚環(huán)的“尺寸效應(yīng)”和與芳烴的“π電子效應(yīng)”[54-55],Calix[4]arene-R14/SiO2-P對(duì)Cs(Ⅰ)的吸附能力和對(duì)Cs(Ⅰ)/Na(Ⅰ)的選擇性更強(qiáng)。TBP、MODB和Octanol等修飾劑能夠與Calix[4]arene-R14分子形成氫鍵,提高杯芳冠醚的疏水性,提高對(duì)Cs(Ⅰ)的吸附容量[56-57]。在4.0 mol/L HNO3溶液中,反應(yīng)120 min,(Calix[4]+Oct)/SiO2-P對(duì)Cs(Ⅰ)的吸附分配系數(shù)高達(dá)94.11 cm3/g。Calix[4]arene-R14/SiO2-P對(duì)Cs(Ⅰ)的最佳吸附酸度為4.0 mol/L,與高放廢液的酸度不符,且Calix[4]arene-R14的結(jié)構(gòu)復(fù)雜,較難合成,產(chǎn)率低(低于15%),所以,基于HexylCalix[4]/SiO2-P、CalixBNapC6/SiO2-P和BiPCalix[4]C6的SPEC萃取色譜分離流程,對(duì)Cs(Ⅰ)的最佳吸附酸度為3.0 mol/L,分配系數(shù)分別達(dá)41.37、18.01 和59.43 cm3/g[58-59]。

Zhang A.等[60]將Calix[4]和DBC共同負(fù)載到SiO2-P中,創(chuàng)新性地提出GPSC萃取色譜分離流程(Group Partitioning of Strontium and Cesium by Extraction Chromatography),實(shí)現(xiàn)了HLLW中Cs(Ⅰ)、Sr(Ⅱ)的吸附分離。當(dāng)溶液HNO3濃度為3.0 mol/L時(shí),Calix[4]@DBC/SiO2-P對(duì)Cs(Ⅰ)和Sr(Ⅱ)的吸附分配系數(shù)分別高達(dá)89.93 cm3/g和75.91 cm3/g,對(duì)Cs(Ⅰ)、Sr(Ⅱ)的回收率分別為99.2%和99.7%。

4 展望

Calix[4]Crowns因其孔徑大小與Cs(Ⅰ)的離子半徑相適應(yīng),能夠有效分離Cs(Ⅰ),被認(rèn)為是一種很有前景的Cs(Ⅰ)萃取劑。然而,傳統(tǒng)的溶劑萃取工藝存在一系列問題,如輻射分解退化,需要大量?jī)x器設(shè)備,還有可能產(chǎn)生大量有機(jī)廢液,等等,而色譜萃取技術(shù)因儀器簡(jiǎn)單、廢液量小等優(yōu)勢(shì),能夠很好地解決上述問題。目前,許多固相萃取劑不可重復(fù)使用,并且回收處理可能會(huì)對(duì)環(huán)境有一定影響,所以,合成對(duì)Cs(Ⅰ)有強(qiáng)絡(luò)合能力的新型Calix[4]Crowns材料以及性能更優(yōu)異的固相載體仍是需要研究的課題之一。

[1] GEORGES W.Molecular dynamics of cation complexation and extraction[M]//ASFIERI C,B?HMER V,HARROWFIELD J,et al.Calixarenes 2001.Dordrecht:Springer Netherlands,2001:312-333.

[2] DANIL De N,CLEVERLEY R M,ZAPATAORMACHEA M L.Thermodynamics of calixarene chemistry[J].Chemical Reviews,1998,98(7):2495-2526.

[3] SACHLEBEN R A,URVOAS A,BRYAN J C,et al.Dideoxygenated calix[4]arene crown-6 ethers enhanced selectivity for caesium over potassium and rubidium[J].Chemical Communications,1999,17:1751-1752.

[4] JI H F,DABESTANI R,BROWN G M,et al.Synthesis and sensing behavior of cyanoanthracene modified 1,3-alternate calix[4]benzocrown-6:a new class of Cs+selective optical sensors[J].Journal of the Chemical Society Perkin Transactions,2001,2(4):585-591.

[5] RUSSELL B C,WARWICK P E,CROUDACE I W.Calixarene-based extraction chromatographic separation of135Cs and137Cs in environmental and waste samples prior to sector field ICP-MS analysis[J].Analytical Chemistry,2014,86(23):11890-11896.

[6] GLATZ J.Demonstration of a TODGA based extraction process for the partitioning of minor actinides from a PUREX raffinate[J].Solvent Extraction and Ion Exchange,2009,27(1):26-35.

[7] ZHANG,DAI A,XU Y,et al.Extraction behavior of cesium and some typical fission and non-fission products with a new 1,3-di(1-decyloxy)-2,4-crown-6-calix[4]arene[J].Radiochimica Acta,2014,102(1/2):135-142.

[8] TSAI S C,OUYANG S,HSU C N.Sorption and diffusion behavior of Cs and Sr on Jih-hsing bentonite[J].Applied Radiation and Isotopes,2001,54(2):209-215.

[9] SHAHWAN T,ERTEN H N.Thermodynamic parameters of Cs+,sorption on natural clays[J].Journal of Radioanalytical and Nuclear Chemistry,2002,253(1):115-120.

[10] ZHANG A,CHEN C,WANG Y,et al.Adsorption of cesium and some typical elements on a novel solid-state macroporous silica-salix[4]arene material[J].Separation Science and Technology,2016,51(12):1962-1970.

[11] SENGUPTA P,SANWAL J,MATHI P,et al.Sorption of Cs and Sr radionuclides within natural carbonates[J].Journal of Radioanalytical & Nuclear Chemistry,2017,312(1):1-10.

[12] WALKER D D,NORATO M A,CAMPBELL S G,et al.Cesium removal from savannah river site radioactive waste using the caustic-side solvent extraction(CSSX) process[J].Separation Science and Technology,2005,40(1/2/3):297-309.

[13] MOYER B A,BONNESEN P V,DELMAU L H,et al.Development of the next-generation caustic-side solvent extraction(NG-CSSX) process for cesium removal from high-level tank waste[C]//Environmental Restoration and Waste Management.Conference:Waste Management 2011.Phoenix:[s.n.],2011:198-207.

[14] ZHANG A,WEI Y,KUMAGAI M,et al.Resistant behavior of a novel silica-based octyl(phenyl)-N,N-disobutyl carbamoylmethylpho shine oxide neutral extraction resin against nitric acid,temperature and gamma-radiation[J].Radiation Physics & Chemistry,2005,72(4):455-463.

[15] CHAI Z.SPEC:a new process for strontium and cesium partitioning utilizing two macroporous silica-based supramolecular recognition agents impregnated polymeric composites[J].Separation Science and Technology,2009,44(9):2146-2168.

[16] ROGERS H,BOWERS J,GATES-ANDERSON D.An isotope dilution-precipitation process for removing radioactive cesium from wastewater[J].Journal of Hazardous Materials,2012,243(12):124-129.

[17] ISAKSSON M,ERLANDSSON B,MATTSSON S.A 10-year study of the137Cs distribution in soil and a comparison of Cs soil inventory with precipitation-determined deposition[J].Journal of Environmental Radioactivity,2001,55(1):47-59.

[18] AND C S G,LUCA V.Ion-exchange properties of microporous tungstates[J].Cheminform,2016,36(9):4992-4999.

[19] DENG H,LI Y,WU L,et al.The novel composite mechanism of ammonium molybdophosphate loaded on silica matrix and its ion exchange breakthrough curves for cesium[J].Journal of Hazardous Materials,2017,324:348-356.

[20] RAIS J,TACHIMORI S,YOO E,et al.Extraction of radioactive Cs and Sr from nitric acid solutions with 25,27-bis(1-octyloxy)calix[4]-26,28-crown-6 and dicyclohexyl-18-Crown-6:effect of nature of the organic solvent[J].Separation Science and Technology,2015,50(8):1202-1212.

[21] LUDWIG R,DZUNG N T K.Calixarene-based molecules for cation recognition[J].Sensors,2002,2(10):397-416.

[22] BONNESEN P V.Fundamental studies regarding synergism between Calix[4]arene-bis(-octylbenzo-crown-6) and alcohol modifiers in the solvent extraction of cesium nitrate[J].Solvent Extraction and Ion Exchange,2005,23(1):23-57.

[23] KUMAR V,SHARMA J N,ACHUTHAN P V,et al.A new bisglycolamide substituted calix[4]arene-benzo-crown-6 for the selective removal of cesium ion:combined experimental and density functional theoretical investigation[J].Rsc Advances,2016,6(52):47120-47129.

[24] LIU X,SUROWIEC K,BARTSCH R A.Di-ionizable p-tert-butylcalix[4]arene-1,3-crown-4 ligands:synthesis and alkaline earth metal cation extraction[J].Cheminform,2009,65(31):5893-5898.

[25] KIM S,KIM H,NOH K H,et al.Potassium ion-selective membrane electrodes based on 1,3-alternate calix[4]crown-5-azacrown-5[J].Talanta,2003,61(5):709-716.

[27] GHIDINI E,UGOZZOLI F,UNGARO R,et al.Complexation of alkali metal cations by conformationally rigid,stereoisomeric calix[4]arene crown ethers:a quantitative evaluation of preorganization[J].Journal of Chromatography B Biomedical Applications,1990,676(1):131-140.

[28] ROCCO U,ALESSRO C,FRANCO U,et al.1,3-Dialkoxycalix[4]arenecrowns-6 in 1,3 alternate conformation:cesium-Selective ligands that exploit cation-arene Interactions[J].Angewandte Chemie International Edition in English,1994,33(14):1506-1509.

[29] THUéRY P,NIERLICH M,éRONIQUE L,et al.Bis(crown ether) and azobenzocrown derivatives of Calix[4]arene:a review of structural information from crystallographic and modelling studies[J].Journal of Inclusion Phenomena and Macrocyclic Chemistry,2000,36(4):375-408.

[30] SIMON N,TOURNOIS B,EYMARD S,et al.Cs selective extraction from high level liquid waste with crown calixarene:where are today?[J].Atalante,2008,34(6):172-178.

[31] SIMON N,EYMARD S,TOURNOIS B,et al.Caesium extraction from acidic high level liquid wastes with functionalized calixarenes[J].DNa,2001,10(3):1-8

[32] DELMAU L H.Improved performance of the alkaline-side CSEX process for cesium extraction from alkaline high-level waste obtained by characterization of the effect of surfactant impurities[R].Tennessee:Oak Ridge National Laboratory.1999.

[33] BONNESEN P V,DELMAU L H,MOYER B A,et al.A robust alkaline-side CSEX solvent suitable for removing cesium from savannah river high level waste[J].Solvent Extraction and Ion Exchange,2000,18(6):1079-1107.

[34] MOYER B A.Development of effective solvent modifiers for the solvent extraction of cesium from alkaline high-level tank waste[J].Solvent Extraction and Ion Exchange,2003,21(2):141-170.

[35] HAVERLOCK T J.Alternatives to nitric acid stripping in the caustic-side solvent extraction(CSSX) process for cesium removal from alkaline high-level waste[J].Solvent Extraction and Ion Exchange,2009,27(2):172-198.

[36] HILL T G,ENSOR D D,DELMAU L H,et al.Thermal stability study of a new guanidine suppressor for the next-generation caustic-side solvent extraction process[J].Separation Science and Technology,2016,51(7):47-51.

[37] LAW J D.Fission product extraction(FPEX):development of a novel solvent for the simultaneous separation of strontium and cesium from acidic solutions[J].Solvent Extraction and Ion Exchange,2005,23(3):449-461.

[38] ELIAS G.FPEX γ-radiolysis in the presence of nitric acid[J].Solvent Extraction and Ion Exchange,2007,25(5):593-601.

[39] KANDWAL P,DIXIT S,MUKHOPADHYAY S,et al.Mass transport modeling of Cs(Ⅰ) through hollow fiber supported liquid membrane containing calix-[4]-bis(2,3-naptho)-crown-6 as the mobile carrier[J].Chemical Engineering Journal,2011,174(1):110-116.

[40] KANDWAL P,ANSARI S A,MOHAPATRA P K.Transport of cesium using hollow fiber supported liquid membrane containing calix[4]arene-bis(2,3-naphtho)crown-6 as the carrier extractant:Part Ⅱ:Recovery from simulated high level waste and mass transfer modeling[J].Journal of Membrane Science,2011,384(1):37-43.

[41] JAGASIA P,MOHAPATRA P K,RAUT D R,et al.Pertraction of radio-cesium from acidic feeds across supported liquid membranes containing calix-crown-6 ligands in a fluorinated diluent[J].Journal of Membrane Science,2015,487:127-134.

[42] JAGASIA P,ANSARI S A,RAUT D R,et al.Hollow fiber supported liquid membrane studies using a process compatible solvent containing calix[4]arene-mono-crown-6 for the recovery of radio-cesium from nuclear waste[J].Separation & Purification Technology,2016,170(2):208-216.

[43] ARENA G,CONTINO A,LONGO E,et al.Two calix-crown based stationary phases:synthesis,chromatographic performance and X-ray photoelectron spectroscopy investigation[J].Journal of Supramolecular Chemistry,2002,2(6):521-531.

[44] TAVLARIDES L L,LEE J S,NAM K H,et al.Sol-gel synthesized adsorbents for metal separation[J].清華大學(xué)學(xué)報(bào)自然科學(xué)版(英文版),2006,11(2):233-240.

[45] KHAN A S,BALDWIN W G,CHOW A.Extraction of alkali metal cations into polyester-based polyurethanef[J].Canadian Journal of Chemistry,2011,65(5):1103-1108.

[46] DIETZ M L,ENSOR D D,HARMON B,et al.Separation and preconcentration of cesium from acidic media by extraction chromatography[J].Separation Science and Technology,2006,41(10):2183-2204.

[47] XIAO C L,ZHANG A Y,CHAI Z F.Synthesis and characterization of a new polymer-based supramolecular recognition material and its adsorption for cesium[J].Solvent Extraction and Ion Exchange,2012,30(1):17-32.

[48] YI R,YE G,LV D,et al.Novel thermo-responsive hydrogel microspheres with calixcrown host molecules as cross-links for highly specific binding and controllable release of cesium[J].Rsc Advances,2015,5(68):55277-55284.

[49] AWUAL M R,YAITA T,TAGUCHI T,et al.Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent[J].Journal of Hazardous Materials,2014,278(3):220-227.

[50] AWUAL M R,SUZUKI S,TAGUCHI T,et al.Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents[J].Chemical Engineering Journal,2014,242(15):127-135.

[51] WEI Y Z,KUMAGAI M,TAKASHIMA Y,et al.Studies on the separation of minor actinide from high-level wastes by extraction chromatography using novel silica-based extraction resins[J].Nuclear Technology,2000,132(3):1472-1475.

[52] ZHANG A Y,WEI Y Z,HOSHI H,et al.Partitioning of cesium from a simulated high level liquid waste by extraction chromatography utilizing a macroporous silica-based supramolecular calix[4]arene-crown impregnated polymeric composite[J].Solvent Extraction and Ion Exchange,2007,25(3):389-405.

[53] ZHANG A,ZHANG W,WANG Y,et al.Effective separation of cesium with a new silica-calix[4]biscrown material by extraction chromatography[J].Separation & Purification Technology,2016,1719(3):17-25.

[54] ALI S M,JOSHI J M,SINGHADEB A K,et al.Dual mode of extraction for Cs+and Na+ions with dicyclohexano-18-crown-6 and bis(2-propyloxy)calix[4]crown-6 in ionic liquids:density functional theoretical investigation[J].Rsc Advances,2014,4(44):22903-22911.

[55] PRODI L,BOLLETTA F,MONTALTI M,et al.Photophysics of 1,3-alternate calix[4]arene-crowns and of their metal ion complexes:evidence for cation—π interactions in solution[J].New Journal of Chemistry,2000,24(24):155-158.

[56] ZHANG A,HU Q,CHAI Z.Chromatographic partitioning of cesium by a macroporous silica-calix[4]arene-crown supramolecular recognition composite[J].Aiche Journal,2010,56(10):2632-2640.

[57] ZHANG A,CHAI Z.Adsorption Property of cesium onto modified macroporous silica calix[4]arene-crown based supramolecular recognition materials[J].Industrial & Engineering Chemistry Research,2012,51(17):6196-6204.

[58] ZHANG A Y,HU Q H.Adsorption of cesium and some typical coexistent elements onto a modified macroporous silica-based supramolecular recognition material[J].Chemical Engineering Journal,2010,159(1/2/3):58-66.

[59] ZHANG A,HU Q,CHAI Z.Synthesis of a novel macroporous silica-calix[4]arene-crown polymeric composite and its adsorption for alkali metals and alkaline-earth metals[J].Industrial & Engineering Chemistry Research,2010,49(5):2047-2054.

[60] ZHANG A,LI J,YING D,et al.Development of a new simultaneous separation of cesium and strontium by extraction chromatograph utilization of a hybridized macroporous silica-based functional material[J].Separation & Purification Technology,2014,127(1):39-45.

ApplicationofCalix[4]CrownsCompoundsinSeparationCesium

DONG Zhimin1,HUANG Yongbiao2,ZHANG Zhibin1,3,WANG Youqun1,3,DAI Ying1,3, CAO Xiaohong1,3,LIU Yunhai1,3

(1.SchoolofChemistry,BiologicalandMaterialsScience,EastChinaUniversityofTechnology,Nanchang330013,China; 2.CriminalPoliceDetachmentofQingyuanPublicSecurityBureau,Qingyuan511518,China; 3.StateKeyLaboratoryBreedingBaseofNuclearResourcesandEnvironment,EastChinaUniversityofTechnology,Nanchang330013,China)

Calix[4]crowns compounds can be used as supermolecular recognition material to separate Cs(Ⅰ) and applied in solvent extraction,liquid membrane extraction and chromatographic separation.This paper introduces Calix[4]crowns compounds and homologous supermolecular recognition material and them recognition performances and adsorption effect for Cs(Ⅰ).The results provide a reference for seeking the Calix[4]crowns organic ligand structure and corresponding functional materials with excellent complexing ability for Cs(Ⅰ).

calix[4]crowns compounds;solvent extraction;chromatographic separation;Cs(Ⅰ)

O625.1

A

1009-2617(2017)06-0452-08

10.13355/j.cnki.sfyj.2017.06.003

2017-04-10

國家自然科學(xué)基金資助項(xiàng)目(21301028,21201033,11475044,41461070,21561002);校研究生創(chuàng)新基金資助項(xiàng)目(DHYC-2016009)。

董志敏(1991-),女,江西撫州人,碩士研究生,主要研究方向?yàn)榉派湫院怂胤蛛x。

劉云海(1976-),男,江西南昌人,博士,教授,主要研究方向?yàn)榉派湫院怂胤蛛x。E-mail:walton_liu@163.com。

主站蜘蛛池模板: 精品久久久久无码| 成人在线综合| 欧美精品色视频| 国产精品观看视频免费完整版| 国产成本人片免费a∨短片| 久久免费视频6| 中文字幕人成乱码熟女免费| 欧美特黄一免在线观看| 中文字幕免费播放| 成人午夜精品一级毛片| lhav亚洲精品| 91无码网站| 18禁不卡免费网站| 伊在人亚洲香蕉精品播放| 99re免费视频| 91区国产福利在线观看午夜| 99这里只有精品免费视频| 中文字幕第4页| 九色综合伊人久久富二代| 亚洲福利视频一区二区| 日本高清成本人视频一区| 精品91视频| 欧美另类一区| 国产精品尤物在线| 91精品专区| 国产精品刺激对白在线| 91在线精品麻豆欧美在线| 欧美午夜在线播放| 久久久波多野结衣av一区二区| 亚洲成aⅴ人在线观看| 国产大片黄在线观看| 亚洲三级a| 国产精品女熟高潮视频| 精品视频在线观看你懂的一区| 国产在线精品99一区不卡| 思思99热精品在线| www欧美在线观看| 亚洲色大成网站www国产| 白丝美女办公室高潮喷水视频| 婷婷在线网站| 国产jizz| 97视频在线观看免费视频| 久久国产亚洲偷自| 老司机aⅴ在线精品导航| 日本高清在线看免费观看| 91在线播放国产| 欧美中文一区| 亚洲国产综合精品一区| 五月天福利视频 | 国产精品亚洲αv天堂无码| 欧美一区二区福利视频| 日本免费福利视频| 国产理论一区| 亚洲精品自拍区在线观看| 久久男人资源站| 久久久久久尹人网香蕉| 丰满人妻久久中文字幕| 色婷婷亚洲十月十月色天| 亚洲国产日韩在线观看| 成人午夜精品一级毛片| 国产二级毛片| 拍国产真实乱人偷精品| 欧美专区在线观看| 青青草欧美| 狠狠综合久久| 91国内在线视频| 国内老司机精品视频在线播出| 日韩免费成人| 91无码视频在线观看| 亚洲日韩高清无码| 国产在线小视频| 丁香亚洲综合五月天婷婷| 午夜国产不卡在线观看视频| 国产精品成人AⅤ在线一二三四| 综合色88| 日日拍夜夜操| 亚洲欧美日韩天堂| 亚洲美女高潮久久久久久久| 在线播放真实国产乱子伦| 成人字幕网视频在线观看| 免费毛片视频| 99这里只有精品在线|