劉曉威 楊秀艷 劉正祥 武海雯 張華新 朱建峰
(國家林業局鹽堿地研究中心,北京 100091)
MicroRNA在植物抵御鹽脅迫過程中的作用
劉曉威 楊秀艷 劉正祥 武海雯 張華新 朱建峰
(國家林業局鹽堿地研究中心,北京 100091)
鹽脅迫是植物生長發育過程中的重要限制因子,可影響植物器官發育、形態建成、信號轉導等各個環節,嚴重時會導致植物死亡。MicroRNA(miRNA)是一類長約19-25 nt的非編碼單鏈RNA分子,越來越多的研究發現,在植物抵御鹽脅迫過程中,miRNA可通過參與調控植物種子萌發、器官發育、形態建成、活性氧清除等過程發揮重要作用。對在植物抵御鹽脅迫過程中發生響應的miRNA進行綜述,旨在為植物耐鹽機制研究和植物耐鹽分子育種提供參考。
miRNA;鹽脅迫;調控機制;植物
據不完全統計,全世界鹽堿地面積約10億hm2,中國鹽堿地總面積約1億hm2[1]。鹽脅迫已成為植物(作物)生長發育的一個重要限制因子,可通過影響植物生長發育的各類進程對植物造成危害,嚴重時會導致植物死亡[2]。鹽脅迫條件下,植物種子細胞內水勢降低,種子生理性吸水困難,導致種子萌發率降低[3]。鹽脅迫下,類囊體膜結構會發生變化,碳同化減少,同時由于植株生理性吸水困難,礦物質積累受阻,導致葉綠素合成降低,光合作用效率下降[4]。此外,鹽脅迫下,植物體內的活性氧代謝紊亂,導致蛋白質聚集失活,影響蛋白質合成;同時,植物為了抵御鹽脅迫會合成各類有機物質造成耗能增加,最終導致植物生長緩慢[5]。鹽脅迫給農林業生產帶來了極大危害,嚴重限制了鹽堿地區的生態改善和經濟發展,因此,研究人員在闡明植物耐鹽機制、提高植物耐鹽性等方面開展了大量研究工作。研究發現,植物自身會啟動相應的耐鹽機制來抵御鹽脅迫。通常情況下植物的耐鹽機制包括:滲透物質積累、離子區域化、清除活性氧等(表1)。
1993年,Lee和Sunkar等[15-16]從線蟲體內發現了第一個MicroRNA(miRNA)基因lin-4,隨后,越來越多的miRNA在水稻、擬南芥等植物中被發現。miRNA是一類長度為19-25 nt 的非編碼RNA,通過對靶基因(mRNA)的降解或抑制其翻譯,在轉錄后水平對基因的表達進行調控,在植物生長發育和環境脅迫響應等方面發揮著重要作用[17-19]。miRNA的發現為研究人員理解植物耐鹽機理提供了新角度。目前,miRNA已經成為了分子生物學研究的熱點領域。本文將在植物響應鹽脅迫過程中發揮作用的miRNA進行整理綜述,以期為闡明植物耐鹽機制和耐鹽植物分子育種提供參考。

表1 植物耐鹽機制
植物miRNA的合成一般包括轉錄、加工、沉默復合體的裝配。植物內源miRNA基因(MIR)通常位于基因間隔區,少數可能存在于內含子中。轉錄過程是由RNA聚合酶II(Pol-II)作用的。Pol-II作用于MIR產生具有莖環結構(或稱發卡結構)的初級轉錄產物Pri-miRNA[20]。Pri-miRNA需進行加工為成熟的RNA后才能發揮作用,Pri-miRNA的加工一般是由一種叫作DCL1的酶所進行的,DCL1是RNaseⅢ家族中Dicer的同源物[21-23],通常作用在位于細胞核內Pri-miRNA發卡結構中靠近或者遠離環端的位點,產生大小約為70-300 bp的miRNA前體(Pre-miRNA)。隨后進行兩次切割,該過程還需要一些輔助蛋白的參與,通常包括RNA結合蛋白(HYL1)、C2H2鋅指結合蛋白SE[24]。兩次切割后會產生雜合雙鏈miRNAmiRNA*(與miRNA配對的鏈),miRNA*互補雙鏈在甲基轉移酶HEN1的作用下使3'末端甲基化[25-26]。隨后,miRNAmiRNA*在轉運蛋白exprotin-5(通常需要HASTY的輔助)的作用下被運送至細胞質中[27]。細胞質中具有RNA誘導的沉默復合體(RISC),雙鏈分子與RISC中的AGO蛋白結合,在RNA解旋酶的作用下,去除miRNA*鏈,另一條也就成為了成熟的單鏈miRNA分子[28](圖1)。成熟的miRNA與其靶mRNA特異性互補結合,通過降解或抑制靶mRNA翻譯來調節基因的表達[29]。
植物miRNA與靶mRNA的作用機制一般有兩種[30],采取何種作用機制主要取決于miRNA與其靶mRNA的序列互補程度[31]。若miRNA與其靶mRNA的序列互補程度較高,則采取切割模式,降解掉靶mRNA(圖2-A);若miRNA與其靶mRNA的序列互補程度較低,則采取抑制其靶mRNA翻譯的模式(圖2-B)[32]。在切割的過程中,與miRNA配對的靶mRNA上第10-11位的核苷酸上的開放閱讀框(ORF)通常作為切割位點[33]。而在抑制翻譯的過程中,miRNA的靶mRNA上的3'末端的UTR區作為主要作用位點,通過降解新合成的多肽來抑制翻譯[34]。剪切和抑制過程大多是協同進行。除此之外,miRNA也可能靶向靶DNA,在轉錄水平上沉默基因的表達(圖2-C)[30,35]。詳細過程可參考圖2。
植物miRNA可參與調控植物生長發育的多個過程。若參與miRNA合成過程中的DCL1基因功能丟失,將會導致植物發育異常,這些異常涉及早期胚胎發育的停滯、葉形狀的改變、花期的延遲、雌性不育等[36-37]。miRNA可以控制頂端分生組織的發育,若miR164異常表達,則會導致根、莖的發育異常[38]。除此之外,miRNA還可以通過參與信號轉導的調控過程來調節植物的發育,如miR164通過調控生長因素響應因子(ARF)(包括ARF2、ARF3、ARF4、ARF10、ARF16 和 ARF17),調控植物的發育[39]。

圖1 植物miRNA形成機制圖[28]

圖2 植物miRNA作用機制[30]
此外,miRNA在植物應對外界脅迫中發揮著重要的作用[40]。常見的脅迫包括以病蟲害為主的生物脅迫和以溫度、水分、氧化等為主的非生物脅迫。研究發現,在植物抵御生物脅迫過程中,miRNA 能夠通過調控靶基因等來抵御病菌的入侵。例如,植物可通過誘導產生對生長素受體基因(TIR1、AFB2和AFB3)進行負調控的miRNA,抑制生長素信號轉導過程,限制假單胞桿菌(Pseudomonas syringae)生長,從而提高植物對假單胞菌的抗性[41];植物也可通過低表達miR398b,降低對其靶基因CSD1和Nod19的抑制,對病害感染做出響應[42]。在植物抵御非生物脅迫過程中,研究發現擬南芥在氧化脅迫下miR398的表達量降低,導致CSD1和CSD2表達量上調,從而減少氧化脅迫的危害[43];擬南芥在低氮條件下會使miR167a的表達量上升,抑制ARF8的表達[44];在缺磷條件下,擬南芥中的miR399表達量增加,具有在莖葉中積累磷功能的靶基因pho2和UBC24的表達受到抑制,擬南芥通過加速磷轉運子基因的表達以及通過自身根系結構的改變來增加對磷的吸收[45-46];通過研究擬南芥中的miR395發現,在低硫脅迫下其表達量增加,APS1的轉錄水平下降,正常硫水平條件下,miR395的表達量下調,APS1的轉錄水平上升。可見,miR395參與了低硫脅迫的響應過程[47];干旱是植物生長發育過程中的常見逆境因子,水稻在干旱條件下誘導miR169的表達,抑制miR168、miR528、miR167的表達,其靶基因MAPK、POD、PLD表達量提高,啟動ABA(脫落酸)誘導的氣孔運動和氧化防御機制來抵御干旱脅迫[48]。低溫是限制植物生長和分布的一種常見非生物因素,研究證實低溫脅迫下,擬南芥或水稻中 miR393、miR397、miR172、miR171、miR169、miR408發生差異表達[49-50]。鹽脅迫是植物生長發育的重要限制因子[2],越來越多的研究表明miRNA在植物抵御鹽脅迫過程中發揮著重要作用[12,27],響應鹽脅迫的miRNA及其作用機制將在下文詳細闡述。
目前已發現許多響應鹽脅迫的植物miRNA。鹽脅迫會啟動植物miRNA所參與的調控過程,不同種類的植物miRNA分別作用其靶基因,通過調控植物的種子萌發、改變植株根系生長、調控生長周期、器官形成、離子區域化、活性氧清除等過程來抵御鹽脅迫的危害(圖3)。

圖3 miRNA在植物抵御鹽脅迫過程中發揮的作用
在鹽脅迫條件下,miRNA發生響應(表1)。Liu[50]和田鑫等[72]研究發現,在鹽脅迫條件下,擬 南 芥 中 的 miR156、miR159、miR319、miR393、miR417、miR828等表達量呈現出上升的趨勢。此外,過表達 miR156的苜蓿種子萌發率較高[73]。Ding[51]和Xue等[74]發現,鹽脅迫下玉米中miR159的表達量上調,miR159通過與其靶基因MYB的共同作用,影響ABA信號調節過程,進而提高種子萌發率。miR393過表達的水稻和擬南芥植株耐鹽堿能力增強,miR393的表達受CK(細胞分裂素)調節,miR393通過其靶基因TIR1參與耐鹽相關基因P5CDH和SRO5的表達來調控種子萌發過程中的激素含量,從而提高鹽堿條件下種子萌發能力[75]。Jung等[76]在轉基因擬南芥中發現,鹽脅迫條件下,miR417過表達的擬南芥種子萌發率較低,并且萌發以后的幼苗生長受到抑制。除此之外,Yang等[53]在研究鹽生植物鹽穗木響應鹽脅迫的過程中發現,miR159、miR894、miR393、miR167、miR5077、miR2619、miR902、miR2867、miR5526均發生響應,其中miR5526上調的同時,啟動其靶基因PEX14參與的過氧化物酶體調控過程,參與種子萌發脂肪酸的β-氧化,進入三羧酸循環,調控鹽脅迫下鹽穗木
的種子萌發過程。

表2 響應鹽脅迫的植物MicroRNAs[56]
Guo等[77]和 Raman等[78]發現鹽脅迫條件下,miR164與NAC共同作用形成更多的側根以維持鹽脅迫下植株正常的水分和營養需求;Ma等[79]發現,在鹽脅迫下,擬南芥中的miR171作用于靶基因GRAS,通過改變植株根系情況來抵御鹽脅迫;鹽脅迫條件下,miR399發生響應,PHO2是miR399的靶基因,植株在PHO2的作用下延長主根,通過延長主根、形成較多的側根或分生組織以維持植株正常的水分需求[80]。miR165和miR166主要參與調控分生組織的形成[81],在鹽脅迫下,擬南芥中的miR165、miR166、miR530的表達量呈上升趨勢,其轉錄因子HD-ZIP介導的細胞信號轉導途徑具有調控植物木質部的形態建成的作用[82]。在擬南芥中,miR396通過其靶基因GRF來調控擬南芥葉片的寬窄,進而提高其抗鹽堿和抗干旱能力[83]。研究發現,干旱和鹽脅迫可以誘導水稻中miR169 的表達,NF-YA轉錄因子為miR169的靶基因,過表達miR169使得擬南芥抵御干旱和高鹽脅迫的能力增強;在玉米中,miR169c的靶基因可以控制氣孔開閉,從而減少水分流失,以抵抗干旱和鹽脅迫[84-85]。Jung等[86]發現,在鹽脅迫下,擬南芥中的miR172表達量上升,植株耐鹽能力增強,miR172通過調節AP2類轉錄因子控制植物開花時間,影響花器官發育和花形態建成。
在水稻、擬南芥和苜蓿中發現,miR398作用于CSD基因[56,66]。鹽脅迫條件下,miR398通過靶向于細胞質的CSD1和質體的CSD2,清除活性氧,從而保護細胞膜結構以抵抗鹽脅迫[43]。除此之外,Higashi等[69]在小立碗蘚中發現miR1073同樣作用于Cu-Zn-CSD,清除鹽脅迫條件下小立碗蘚中活性氧的累積,保護細胞膜結構,提高植株耐鹽能力。研究人員在豇豆中發現了與鹽脅迫相關的miR408,目前確定其靶基因為peptide chain release factor,推測與活性氧的清除有關,但作用機制仍待進一步研究[68]。
除了以上幾種調控類型外,植物在抵御鹽脅迫過程中發生響應的miRNA還有其他的調控過程。miR167作用于ARF,參與信號調節過程,以應對鹽脅迫[59],miR395與植物耐鹽有關,目前僅確定其靶基因為APS1,關于miR395的研究主要集中在植物在硫鹽脅迫下的調控過程,發現植株受低硫脅迫時,miR395的表達量上調,導致APS1的轉錄水平下降,若正常硫水平條件下,miR395 表達量較低,通過調控APS1的轉錄水平來抵御硫鹽脅迫[47]。miR162通過螯合金屬離子于液泡中抵御硫鹽脅迫,但在鹽脅迫條件下,miR162也發生響應,其作用機制仍待進一步研究[56]。另外,在鹽生植物鹽穗木響應鹽脅迫過程中,miR159與其靶基因ATM參與鹽脅迫下的細胞凋亡調控;miR894與其靶基因UBE2H參與脅迫下蛋白質水解,miR2867在靶基因RFC的作用下參與脅迫下的DNA修復過程,miR5077、miR2619在其靶基因PLC、PPP3C的作用下分別參與Ca2+信號通路和MAPK的信號通路調節過程[53]。除此之外,miR776、miR815、miR1218、miR1436、miR1445、miR1446、miR1447、miR1450、miR1771等這些新發現響應鹽脅迫的植物miRNA的作用機制仍待進一步研究[66,70]。
與鹽脅迫下種子萌發相關的miRNA可通過影響種子滲透勢、調節激素含量、誘導各類信號過程等來提高種子萌發率。種子是植物生活史中抗性最強的階段,但種子萌發是植物生長發育過程中最為脆弱的階段[6]。因此,種子萌發過程中的miRNA作用機制應深入研究,同時植物形態發育、器官形成等過程也應被重視。
目前關于植物耐鹽miRNA的研究大多集中在擬南芥和水稻等模式植物上,但在鹽脅迫條件下,同種miRNA會因物種不同其表達量有差異,發揮的作用也有所不同,如Jia等[66]發現,在鹽脅迫條件下,歐洲山楊中miR398的含量呈上升下降再上升的變化趨勢,而擬南芥中miR398的含量呈持續下降趨勢。開展鹽脅迫條件下更多植物物種miRNA表達譜研究和綜合分析,探索抵御鹽脅迫過程中植物miRNA的保守性和物種特異性,對于全面了解miRNA在植物抵御鹽脅迫過程中的作用機制,篩選植物耐鹽相關miRNA以及開展植物耐鹽分子育種尤為重要。
在鹽生植物鹽穗木、堿蓬等植物中新發現的響應鹽脅迫的miRNA的作用方式更為多樣,因此有必要進行深入研究,以便于篩選鑒定新的耐鹽關鍵基因,揭示鹽生植物的耐鹽分子機制,為耐鹽堿植物育種提供新的基因資源,奠定更為完善的理論基礎。
新發現的與耐鹽相關的miR1445、miR1446、miR1447、miR1450和 miR1771[70]等是如何發揮耐鹽機制的,這些miRNA都參與哪些耐鹽性調節過程,作用于哪些基因,受到哪些因素影響等,這些都是有待于繼續進行系統深入研究的問題。只有全面深入的了解miRNA在植株抵御鹽脅迫過程中發揮的作用,才有可能更加高效的利用植物miRNA提高植物耐鹽性,從而降低鹽脅迫對農林業生產造成的危害。
[1] 王遵親, 祝壽泉, 俞仁培, 等. 中國鹽漬土[M]. 北京:科學出版社, 1993.
[2]Zhang JL, Shi H. Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynth Res, 2013, 115(1):1-22.
[3]Zhu JK. Abiotic stress signaling and response in plants[J]. Cell,2016, 167(2):313-324.
[4]張娟, 姜闖道, 平吉成. 鹽脅迫對植物光合作用影響的研究進展[J]. 農業科學研究, 2008, 29(3):74-80.
[5]韓志平, 張海霞, 周鳳. 鹽脅迫對植物的影響及植物對鹽脅迫的適應性[J]. 山西大同大學學報:自然科學版, 2015, 31(3):59-64.
[6]Moez H, Chantal E, Mariama N, et al. Insights on plant salt tolerance mechanisms and their potential use for breeding[J]. Front Plant Sci, 2016, 29(7):1787-1789.
[7]Niramaya S, Muchate Ganesh C, Nikalje Nilima S, et al. Plant salt stress:adaptive responses, tolerance mechanism and bioengineering for salt tolerance[J]. Botanical Review, 2016, 82(4):371-406.
[8] Dietz KJ, Tavakoli N, Kluge C, et al. Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level[J]. Exp Bot,2001, 52(363):1969-1980.
[9]張楠楠, 徐香玲. 植物抗鹽機理的研究[J]. 哈爾濱師范大學:自然科學學報, 2005, 21:65-68.
[10]Ulrich D, Aaron B, Julian I. Plant salt-tolerance mechanisms[J].Science Direct, 2014, 19(6):371-379.
[11] Jia HS, Lu CM. Effects of abscisic acid on photoinhibition in maize plants[J]. Plant Sci, 2003, 165(6):1403-1410.
[12] 代鄒,孫永健,徐徽, 等. 多胺對鹽脅迫下植物的作用[J].農業科學與技術, 2014, 3:344-351.
[13] Zhu JK. Genetic analysis of plant salt tolerance using Arabidopsi[J]. Plant Physion, 2000, 124:941-948.
[14] 景昕, 張旸, 李玉花. 植物耐鹽研究進展[J]. 生物技術通訊,2010, 21(2):290-294.
[15]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5):843-854.
[16]Sunkar R, Girke T, Zhu JK. Cloning and characterization of microRNAs from rice[J]. Plant Cell, 2005, 17(5):1397-1411.
[17]Ambros V. microRNAs:tiny regulators with great potential[J].Cell, 2001, 107:823-826.
[18]Dolata J, Bajczyk M, Bielewicz D, et al. Salt stress reveals a new role for ARGONAUTE1 in miRNA biogenesis at the transcriptional and posttranscriptional levels[J]. Plant Physiol, 2016, 172(1):297-312.
[19] Zhang B, Pan X, Cobb GP, et al. Plant microRNA :a small regulatory molecule with big impact[J]. Dev Biol, 2006, 289 :3-16.
[20] Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II[J]. The EMBO Journal, 2004, 23(20):4051-4060.
[21]Wu G. Plant MicroRNAs and development[J]. J Genet Genomics, 2013, 40:217-230.
[22]Millar AA, Waterhouse PM. Plant and animal microRNAs:similarities and differences[J]. Funct Integr Genomics, 2005, 5(3):129-135.
[23]Llave C, Xie Z, Kasschau KD, et al. Cleavage of Scarecrow like miRNA targets directed by a class of Arabidopsis miRNA[J].Science, 2002, 297(5589):2053-2056.
[24]Reinhart BJ, Weinstein EG, Rhoades MW, et al. MicroRNAs in plants[J]. Genes Dev, 2002, 16(13):1616-1626.
[25]Rhoades MW, Reinhart BJ, Lim LP, et al. Prediction of plant microRNA targets[J]. Cell, 2002, 110(4):513-520.
[26]Fujioka Y, Utsumi M, Ohba Y, et al. Location of a possible miRNA processing site in SmD3/SmB nuclear bodies in Arabidopsis[J].Plant and Cell Physiol, 2007, 48(9):1243-1253.
[27]Alejandra C, Jose LR. Post transcriptional gene regulation of salinity and drought responses by plant microRNAs[J]. Plant Cell & Environment, 2009, 339(4):381-389.
[28] Olivier V. Origin, biogenesis, and activity of Plant MicroRNAs[J].Cell, 2009, 136(4):669-687.
[29]Kong W, Zhao JJ, He LL, et al. Strategies for profiling microRNA expression[J]. Cell Physiol, 2009, 218(1):22-25.
[30]Bartel DP. MicroRNAs:Genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.
[31]Tang GL, Reinhart BJ, Zamore PD. A biochemical framework for RNA silencing in plants[J]. Genes Dev, 2003, 17 :49-63.
[32] Bartel B, Bartel DP. MicroRNAs:at the root of plant development[J]. Plant Physiol, 2003, 132(2):709-717.
[33]Llave C, Xie ZX, Carrington JC. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA[J]. Science,2002, 297(5589):2053-2056.
[34]Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J]. Plant Cell, 2004, 16(8):2001-2019.
[35] Bao N, Lye KW, Barton MK. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome[J]. Dev Cell, 2004, 7(5):653-662.
[36] Liu B, Cao S. Loss of function OsDCL1 affects microRNAs accumulation and causes developmental defects in rice[J]. Plant Physiol, 2005, 139:296-305.
[37]Park W, Chen X. Carpel F. CARPEL FACTORY, a Dicer homolog,and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana[J]. Current Bio, 2002, 12:84-95.
[38]Lu X, Dun H, Lian C, et al. The role of peu-miR164 and its target PeNAC genes in response to abiotic stress in Populus euphratica[J]. Plant Physiol Biochem, 2017, 115:418-438.
[39]Laufs P, eaucelle A, Traas J. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristem[J]. Development, 2004, 1:4311-4322.
[40] Zhu JK. Plant salt tolerance[J]. Trends in Plant Sci, 2001, 6(2):66-71.
[41]Navarro L, Dunoyer P, Jay F, et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling[J].Science, 2006, 312(5772):436-439.
[42]Naya L, Paul S, Valdes-Lopez O, et al. Regulation of copper homeostasis and biotic interactions by microRNA 398b in common bean[J]. PLoS One, 2014, 9(1):e84416.
[43]Sunkar R, Kapoor A, Zhu JK. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance[J]. Plant Cell, 2006, 18:2051-2065.
[44]Gifford ML, Dean A, Gutierrez RA, et al. Cell-specific nitrogen responses mediate developmental plasticity[J]. Proc Natl Acad Sci USA, 2008, 105(2):803-808.
[45]Fujii H, Chiou TJ, Lin SI, et al. A miRNA involved in phosphatestarvation response in Arabidopsis[J]. Curr Biol, 2005, 15(22):2038-2043.
[46]Chiou TJ, Aung K, Lin SI, et al. Regulation of phosphate homeostasis by microRNA in Arabidopsis[J]. Plant Cell, 2006,18(2):412-421.
[47]Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress induced miRNA[J]. Mol Cell, 2004, 14(6):787-799.
[48]Zhao BT, Liang RQ, Ge LF, et al. Identification of drought-induced microRNAs in rice[J]. Biochem Biophys Res Commun, 2007,354(2):585-590.
[49] Wang ST, Sun XL, Yoichiro H, et al. MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice(Oryza sativa L.)[J]. PLoS One, 2014, 9(3):e91357.
[50]Liu HH, Tian X, Li YJ. Microarray based analysis of stressregulated microRNAs in Arabidopsis thaliana[J]. RNA, 2008,14(5):836-843.
[51]Ding D, Zhang LF, Wang H, et al. Differential expression of miRNAs in response to salt stress in maize roots[J]. Annals of Bot, 2009, 103(1):29-38.
[52] Xie FL, JR Stewart CN, Taki FA, et al. High-throughput deep sequencing shows that microRNAs play important roles in switch grass responses to drought and salinity stress[J]. Plant Biotechnol J, 2014, 12(3):354-366.
[53] Yang R, Zeng Y, Yi X, et al. reveals the important role of microRNAs in the halophyte Halostachys caspica[J]. Plant Biotechnol J, 2015, 13(3):395-408.
[54]Sachin AG, Birendra Prasad S. Novel and conserved miRNAs in the halophyte Suaeda maritima identified by deep sequencing and computational predictions using the ESTs of two mangrove plants[J]. BMC Plant Biol, 2015, 15(1):1-18.
[55]Xie FL, Wang QL, Sun RR, et al. Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton[J]. J Exp Bot, 2015, 66(3):789-804.
[56]馬風勇, 朱永興, 石曉霞, 等. 植物microRNA抗逆性研究進展[J]. 西北農林科技大學學報:自然科學版, 2012, 40(5):218-222.
[57]Zhang BH, Pan XP. Identification and characteristic of new plant microRNAs using EST analysis[J]. Cell Eesearch, 2005, 15 :336-360.
[58] Singh A, Roy S, Singh S, et al. Phytohormonal crosstalk modulates the expression of miR166/165s, target Class III HD-ZIPs, and KANADI genes during root growth in Arabidopsis thaliana[J].Sci Rep, 2017, 7(1):3408-3412.
[59]Zhu JF, Li WF, Yang WH, et al. Identification of microRNAs in Caragana intermedia by high-throughput sequencing and expression analysis of 12 microRNAs and their targets under salt stress[J]. Plant Cell Rep, 2013, 32(9):1339-1349.
[60]Qin Z, Chen J, Jin L, et al. Differential expression of miRNAs under salt stress in Spartina alterniflora leaf tissues[J]. J Nanosci Nanotechnol, 2015, 15(2):1554-1561.
[61] Shen JQ, Xie KB, Xiong LZ. Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress response[J]. Mol Genet Genomics, 2010, 10 :3-34.
[62]Jian X, Zhang L, Li G, et al. Identification of novel stress-regulated microRNAs from Oryza sativa L.[J]. Genomics, 2010, 95 :47-55.
[63]Tian YH, Tian YM, Luo XJ, et al. Identification and characterization of microRNAs related to salt stress in broccoli, using highthroughput sequencing and bioinformatics analysis[J]. BMC Plant Bio, 2014, 14:226.
[64]Frazier TP, Sun G, Burklew CE, et al. Salt and drought stresses induce the aberrant expression of microRNA genes in Tobacco[J]. Mol Bio, 2011, 49(2):159-165.
[65]Kazan K. Auxin and the integration of environmental signals into plant root development[J]. Annals of Bot, 2013, 112(9):1655-1665.
[66]Jia XY, Wang WX, Ren LG, et al. Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana[J]. Plant Mol Bio, 2009, 71(1/2):51-59.
[67]Dongwon B, Hyun JC, Songhwa K. A role for Arabidopsis miR399f in salt, drought, and ABA signaling[J]. Mol Cells, 2016, 39(2):111-118.
[68]Paul S, Kundu A, Pal A. Identification and validation of conserved microRNAs along with their differential expression in roots of Vigna unguiculata grown under salt stress[J]. Plant Cell Tissue and Organ Culture, 2011, 105(2):233-242.
[69]Higashi Y, Takechi K, Takano H, et al. Involvement of microRNA in copper deficiency-induced repression of chloroplastic Cu-Zn-superoxide dismutase genes in the moss Physcomitrella patens[J]. Plant Cell Physiol, 2013, 54(8):1345-1355.
[70] Lu S, Sun YH, Chiang VL. Stress responsive microRNAs in Populous[J]. Plant, 2008, 55(1):131-151.
[71]Gharat SA, Shaw BP. Computational prediction and experimental validation of a novel miRNA in Suaeda maritima, a halophyte[J]. Genetics & Mole Res GMR, 2016, 15(1):1-12.
[72] 田鑫. 擬南芥脅迫誘導microRNA的分離和功能研究及microRNA啟動子分析[D]. 泰安:山東農業大學, 2009.
[73]Muhammad A, Margaret YG, Ken W, et al. An insight into microRNA-156 role in salinity stress responses of Alfalfa[J].Front Plant Sci, 2017, 8:356-359.
[74] Xue T, Liu Z, Dai X, et al. Primary root growth in Arabidopsis thaliana is inhibited by the miR159 mediated repression of MYB33, MYB65 and MYB101[J]. Plant Sci, 2017, 262:182-189.
[75]Gao P, Bai X, Yang L, et al. Osa-miR393:A salinity and alkaline stress-related microRNA gene[J]. Mol Biol Rep, 2010, 12 :345-363.
[76] Jung HJ, Kang H. Expression and functional analyses of micro-RNA417 in Arabidopsis thaliana under stress conditions[J].Plant Physiol Biochem, 2007, 45:805-811.
[77]Guo HS, Xie Q, Fei JF, et al. MicroRNA directs mRNA cleavage of the transcription factor NaCl to down regulate auxin signals for Arabidopsis lateral root development[J]. Plant Cell, 2005, 17 :1376-1386.
[78]Raman S, Greb T, Peaucelle A, et al. Interplay of miR164, CUPSHAPED COTYLEDON genes and LATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana[J].Plant, 2008, 55:65-76.
[79]Ma HS, Liang D, Shuai P, et al. The salt and drought inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana[J]. J Exp Bot, 2010, 61(14):4011-4019.
[80]Liu TY, Huang TK, Tseng CY, et al. PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis[J].Plant Cell, 2012, 24:2168-2183.
[81]Carlsbecker A, Lee JY, Roberts CJ, et al. Cell signal ling by microRNA165/6 directs gene does dependent root cell fate[J].Nature, 2010, 465:316-321.
[82]Sakaguchi J, Watanabe Y. miR165/166 and the development of land plants[J]. Dev Growth Differ, 2012, 54 :93-99
[83]Debernardi JM, Mecchia MA, Vercruyssen L, et al. Posttranscriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity[J].Plant J, 2014, 79(3):419-426
[84]Zhao B, Ge L, Liang R, et al. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor[J]. BMC Mol Biol, 2009, 10 :29-38.
[85]Luan M, Xu M, Lu Y, et al. Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves[J]. Gene, 2015, 55 :178-185.
[86]Jung JH, Seo YH, Seo PJ, et al. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis[J]. Plant Cell, 2007, 19 :2736-2748.
Role of MicroRNA in Plant Resistance to Salt Stress
LIU Xiao-wei YANG Xiu-yan LIU Zheng-xiang WU Hai-wen ZHANG Hua-xin ZHU Jian-feng
(Research Center of Saline and Alkali Land of State Forestry Administration,Beijing 100091)
Salt stress is a major limiting factor in the process of plant growth and development,which can affect the process of plant organ development,morphogenesis,signal transduction,and so on. MicroRNA(miRNA)is a class of non-coding single stranded RNA about 19-25 nt long,and more and more studies have found that plant miRNAs play an important roles in salt resistance by participating in the regulation of plant seed germination,organ development,morphogenesis and active oxygen scavenging. In this paper,plant miRNAs,which respond to salt stress,are reviewed in order to provide references for the study of salt tolerance mechanism and molecular breeding of plant salt tolerance.
miRNA;salt stress;regulation mechanism;plant
10.13560/j.cnki.biotech.bull.1985.2017-0538
2017-06-26
國家自然科學基金項目(31600542),國家重點研發計劃(2016YFC0501303)
劉曉威,男,碩士研究生,研究方向:生物化學與分子生物學;E-mail:liuxiaoweicaf@163.com
張華新,男,博士,研究員,研究方向:耐鹽堿植物選育與鹽堿地生物治理;E-mail:zhanghx1998@126.com;朱建峰,男,博士,助理研究員,研究方向:耐鹽堿植物遺傳改良與鹽堿地生物治理;E-mail:jianfengzhu666@163.com
(責任編輯 朱琳峰)