胡曉 侯旭 袁雪 管丹 劉悅萍,3
(1. 北京農學院植物科學技術學院,北京 102206;2. 北京農學院生物科學與工程學院,北京 102206;3. 北京林果業生態環境功能提升協同創新中心,北京 102206)
ARF和Aux/IAA調控果實發育成熟機制研究進展
胡曉1侯旭2袁雪2管丹1劉悅萍2,3
(1. 北京農學院植物科學技術學院,北京 102206;2. 北京農學院生物科學與工程學院,北京 102206;3. 北京林果業生態環境功能提升協同創新中心,北京 102206)
生長素是調控果實發育成熟的重要植物激素之一。在生長素介導的信號轉導機制中,ARF和Aux/IAA扮演重要的角色。ARF與生長素響應基因啟動子區域內的生長素響應元件結合,促進或抑制基因的表達。Aux/IAA通過結構域Ⅲ和Ⅳ與ARF特異性結合,從而調節生長素早期應答基因的轉錄功能。研究表明,ARF因子參與調控果實形態發育、硬度和糖分積累等,Aux/IAA因子在授粉、果實形態發育等方面作用明顯。此外ARF和Aux/IAA之間相互或與自身發生的互作以調控下游基因表達是植物體響應生長素信號的主要機制。介紹了ARF和Aux/IAA的結構特征、在不同植物中的分布狀況以及與果實發育成熟的關系,同時討論了ARF和Aux/IAA互作的研究現狀,旨為進一步闡明生長素調控果實發育成熟的機制提供參考。
ARF;Aux/IAA;果實;發育與成熟;調控機制
生長素(Auxin)是第一個被發現的植物激素,其能促進植物細胞的膨大,引起植物向性生長,參與植物組織器官的形成及果實的發育成熟等,在植物響應逆境脅迫過程中發揮重要的調控作用[1]。
目前研究表明,生長素引起植物生理反應的細胞信號轉導途徑既有直接作用機制,也存在分子上的調控。參與生長素調節轉錄過程的一系列基因叫做原初生長素反應基因,已知的這類基因包括3個基 因 家 族 Aux/IAA(Auxin/indole acetic acid),GH3(Gretchen Hagen3)和 SAUR(Small auxin up RNA),它們的啟動子上游均含有的保守序列“TGTCTC”,該序列被稱之為生長素響應原件(AuxREs)[2-3]。生長素響應因子(Auxin response factors,ARF)是一類能夠識別并與AuxREs結合,調控生長素響應基因表達的轉錄因子[3]。ARF調節基因的表達決定其結構存在的狀態,其可與其它的ARF或生長素阻遏 蛋 白(Auxin/Indole-3-Acetic Acid,Aux/IAA) 形成二聚體,阻遏ARF的轉錄活性[4]。在生長素信號轉導過程中,當內源生長素濃度增高時,生長素與受體TIR1/AFBs(Transport inhibitor resistant/Auxin signaling Fbox)結合后,使TIR1易于結合AUX/IAA蛋白并誘導發生泛素化反應,在26S蛋白酶降解作用下ARF被釋放,開啟對下游基因的調控作用(圖1)[5]。ARF與Aux/IAA是生長素的信號轉導途徑中的重要因子,其在植物體內廣泛存在(表1),并對一些生理過程發揮著重要的調控作用。
本文將對生長素信號轉導相關因子ARF和Aux/IAA在果實成熟發育過程中的調控作用以及因子間相互作用的研究進展進行概述,以期為生長素調控果實發育成熟的分子機制研究提供參考。

表1 ARF與Aux/IAA家族成員在各物種中的分布
一個典型的ARF因子由N-末端保守的DNA結合域(DNA-binding domain,DBD),C-末端保守的二聚體結合域(Dimerization domain,CTD)以及中間非保守序列(MR)組成(圖1)。其蛋白分子量一般在67-129 kD。其中,DBD結合于生長素響應基因上游的生長素響應元件[3],CTD結構域在由于組成上與Aux/IAA結構域Ⅲ、Ⅳ的相似性很高因此可與之結合[26]。MR的氨基酸序列可以決定ARFs轉錄因子對下游基因的激活或者抑制活性,如果富含谷氨酰胺,其ARF因子具有激活功能,如擬南芥AtARF5、6、7、8、9和19;如果富含脯氨酸、蘇氨酸和絲氨酸,其ARF因子則為轉錄抑制子,如擬南芥AtARF1、2、4和9[27]。此外,有小部分ARF因子結構不包含CTD結構域,如擬南芥AtARF3、13和17[3],這類因子的功能尚未深入研究。
ARF因子在植物組織內普遍表達,且具有時空特異性[25]。研究表明擬南芥 AtARF2、3、5-8、17和19分別參與調控植物體形態生長,如頂芽形成、花粉壁合成、維管束發育、下胚軸向性運動、不定根形態建成等[28-33]。在植物激素信號轉導方面,AtARF2和AtARF19被認為是生長素和乙烯信號的關鍵位點,JAZ/TAFY10A的表達在被茉莉酸(Jasmonic acid,JA)誘導的同時受生長素響應因子AtARF6和AtARF8控制[29]。在維管束發育方面,AtARF5等位基因monopteros(mp)的強mp突變體與弱mp突變體均導致植株維管束發育紊亂,無效mp基因具有致死效應[34-35]。有研究表明,AtARF5可直接調節AtARR7和AtARR15參與維持頂端分生組織發育,可調控AtATHB8影響葉片維管束組織的結構[36-37]。劉振華等[25]總結了大量的研究成果,發現ARF sister pair基因雙突變的表型往往比單突變要強,這證明了ARF因子在功能上的冗余性。

圖1 生長素信號轉導途徑[25]
ARF對果實成熟發育調控的研究多集中于番茄。迄今為止,番茄中共發現有21個ARF因子[38],其中SlARF3、5、6、13、16和17在花、果實發育的綠熟期與紅熟期表達較高,SlARF1、2、4、7、8、11 和 14在綠熟期時期表達較高[14]。在果實形態發育方面,Goetz等[39-40]發現抑制SlARF8表達的單性結實植株突變體果實比普通單性結實植株果實直徑明顯增加,推測SlARF8因子可能是番茄果實膨大的重要負調控因子,且該研究結果在擬南芥與茄子中也得到了驗證。此外,SlARF7被證明也是果實發育初期的負調控子[41]。在果實糖分積累方面,Sagar等[42-43]發現抑制SlARF4表達可釋放SlGLK1基因表達并誘導葉綠素大量合成最終促進果實的糖分積累,且在SlGLK1基因啟動子區域發現AuxREs結構,推測SlARF4為該因子的負調控因子。此外,有研究推測SlARF4還與番茄細胞壁結構建成相關。在花器官發育中,擬南芥AtARF6、AtARF8參與調控JA合成及花器官成熟,AtARF17參與調控果實發育并且與胚授粉密切相關[44]。此外,在乙烯信號轉導途徑中,ARF因子同樣參與調控。乙烯(Ethylene)被認為是調控果實成熟的主要植物激素,木瓜中乙烯信號轉導因子CpETR1和CpETR2以及乙烯合成因子CpACS1、CpACS2和 CpACO1的啟動子區域均發現了 AuxREs結構[22]。
ARF因子在其它果實發育中的研究也取得了一定進展。甜橙(Citrus sinensis)基因組中篩選出19個ARF因子,通過不同組織部位轉錄水平的檢測,CsARF8和12在發育后期果實中表達顯著[21]。木瓜(Carica papaya L.)中共篩選出11個ARF成員,其中CpARF1在果實發育過程中的表達顯著增加[22]。蘋果(Malus domestica Borkh)中也檢測到共計29個ARF編碼基因[45]。桃(Prunus persicae L.)基因組中篩選出了18個ARFs編碼基因,其中大部分ARF因子在桃的組織部位廣泛存在,個別ARF因子的表達部位具有局限性,如PpARF13和16在根與莖中沒有表達,PpARF5僅在果實中表達[19]。我們實驗室發現‘晚 24 號’桃在硬核期PpARF1表達量明顯上調。由于在果實硬核期中果皮生長基本停滯,養分大量向種子中的胚和胚乳集中[46],因此推測該因子可能與桃胚形態建成以及內果皮木質化密切相關,此外有研究推測PpARF6因子參與調控果實花色素苷積累[20,47]。
Aux/IAAs因子是一類半衰期較短的核蛋白,普遍包含4個保守的結構域(圖1)[4,48]。結構域I中含有保守的亮氨酸序列(LxLxLx),乙烯信號阻遏蛋白(EAR)中也存在類似結構,該序列賦予Aux/IAA轉錄抑制子的特性,但抑制效力與LxLxLx序列的成分無明確規律[15,49]。結構域II包含13個氨基酸,序列高度保守。在信號轉導過程中生長素受體TIR1與結構域II結合引起Aux/IAA因子泛素化降解,從而調控下游基因的表達[3,5,26]。結構域Ⅲ、Ⅳ具有ARFs蛋白CTD的同源結構域,主要負責Aux/IAA蛋白自身的二聚化和多聚化以及與ARFs的二聚化,從而抑制生長素反應基因的轉錄。然而,有個別非典型性Aux/IAA因子缺失部分結構域,這類因子普遍表達量較低且受束性較強。如番茄SlIAA33同時缺失結構域I與II,目前在各個組織部位均未能有效檢測到該因子的mRNA;SlIAA32缺失轉錄抑制功能的結構域II,僅在番茄“轉色期”發現該因子的生長素信號抑制活性,目前該因子尚未研究透徹[15];擬南芥AtIAA20和AtIAA31被發現缺失結構域II,經檢測這兩個因子的半衰期長于其他結構完整的擬南芥Aux/IAA因子[50]。在功能方面,目前人們普遍認為Aux/IAA具有轉錄調控和參與組成生長素信號轉導復合體兩種作用。
Aux/IAA因子在植物發育過程中起重要調控作用,其作用主要包括向性生長,細胞伸長、分裂,根毛、維管組織的發育,以及花、果和種子的形態建成等[2,51]。擬南芥 AtIAA12突變體 iaa12/bdl-1的根系發育不良[52]。AtIAA-28表達抑制突變體IAA28-1表現出側根生長旺盛,頂端優勢缺失等與生長素關聯表型的變異[53]。AtIAA-1抑制型突變體axr5-1、番茄突變體 SlIAA3[54]與馬鈴薯突變體 StIAA2[55]的植株,其根系生長與向性運動均發生異常[56]。
Aux/IAAs在果實發育中有重要的調控作用。在果實形態發育方面,番茄SlIAA9表達抑制型突變體植株的復合葉片被簡單葉片所替代,果實發育順序發生顛倒從而產生單性結實的果實[57]。SlIAA9在轉色期與紅熟期時期高效表達,如沉默該因子的表達將會導致番茄單性結實[15,51]。沉默SlIAA27可導致花粉與胚珠的生育能力明顯降低,果實變小且胎座增大[58]。SlIAA17的組織定位結果揭示該基因在果肉中大量出現,沉默該基因后突變體果實較野生型果實明顯增大,揭示該基因可能與果肉增厚有關[59]。SlIAA3隨著番茄果實發育表達量逐步提升,在轉色期對果實噴施乙烯信號阻遏劑1-MCP能顯著抑制SlIAA3的表達,說明該基因還受到乙烯信號的調控[57]。在果實發育過程中,Aux/IAA的表達量變化差異明顯。通過對草莓發育過程中FaAIAA1與FaIAA2的表達量進行檢測,發現這兩個基因在小綠期和白果期時期表達量較高,大綠期時期表達量最低,而FaIAA2在小綠期時期表達量最高,且隨著發育進程的推進表達量逐步下降[60]。本實驗室對桃Aux/IAA家族進行了鑒定與果實發育中的表達分析,結果顯示PpIAA3和PpIAA17在桃果實成熟期中果皮的表達量顯著升高,PpIAA26、PpIAA29 Z種子中的表達量顯著提高,表明以上4個因子在桃果實硬核期具有重要的調控作用[47]。由于PpIAA17與SlIAA17同源性較高,推測該因子也可能具有促進果實膨大的功能[59]。此外,史夢雅等認為PpIAA17還與桃內果皮在硬核期的木質化相關[29]。PpIAA3與SlIAA3在果實發育進程中的表達模式相似,推測兩因子在果實發育也具有相似的調控功能[57]。Aux/IAA因子在植物體響應逆境脅迫的過程中也參與了重要的信號傳導作用。經實驗證實,擬南芥DREB/CBF家族可激活AtIAA5和AtIAA19表達以響應非生物脅迫,在IAAs基因表達抑制型突變體植株的抗逆性顯著降低。該研究推測,Aux/IAA是協調植物響應脅迫以及生長素介導的調控網絡的關鍵因子,為維持植物體穩定發育發揮重要的調控功能[61]。
目前普遍認為ARF與Aux/IAA因子間通過CTD結構域構成特定二聚體或直接形成二聚體調控下游基因表達,ARF因子自身也可直接調控下游基因表達[3-4]。生長素信號阻遏蛋白Aux/IAA結合并抑制ARF的轉錄調控活性是植物體響應生長素信號的主要機制[4,32,62]。近期在小立碗蘚(Physcomitrella patens)的研究證實了生長素通過Aux/IAA影響ARF最終對下游基因進行調控這一機制,并發現了Aux/IAA對生長素信號的響應的專一性[63]。
近年來,基于互作模擬軟件(Cytoscape,http://www.cytoscape.org)、酵母雙雜交技術(Yeast two hybrid)與雙分子熒光互補技術(Bimolecular fluorescence complementation,BiFC), 在 挖 掘 Aux/IAA-ARF互作關系上取得了一定的研究成果[27],目前以擬南芥、水稻及番茄等物種的研究居多。ARF與Aux/IAA互作網絡非常復雜,有研究通過整合共表達圖譜與蛋白-蛋白互作數據發現多達70%的ARF與Aux/IAA因子存在相互作用的可能性[64]。目前,擬南芥中共發現213對互作關系,水稻中8個ARF因子與15個Aux/IAA因子間可相互作用,推測番茄SlARF2A至少可與5個Aux/IAA因子互作,SlARF7A與SlARF16推測至少可與11個Aux/IAA因子互作[64-65]。在互作方式上,除了典型的ARFAux/IAA二聚體,還存在ARF-ARF和Aux/IAAAux/IAA的互作模式,但目前研究尚不深入[27]。不同ARF-Aux/IAA組合功能各異[66]。有實驗表明擬南 芥 AtIAA3-AtARF7、AtIAA19-AtARF7、AtIAA17-AtARF1和 AtIAA8-AtARFs(AtARF7、11、16及19)互作單元分別參與子葉下胚軸及根系發育調控[67-68]。AtARF6和8與一些Aux/IAA因子僅在發育中的花與花芽組織內互作,這表明ARF-Aux/IAA的互作具有組織特異性[64]。番茄SlARF5在成熟期表達量最高,該因子可與已證實的成熟相關因子SlIAA3發生互作[69]。此外SlARF7A-SlIAA8互作在番茄果實綠熟期的作用同樣值得矚目[69]。通過整合現有研究結果,劉振華等推測雖然ARF和Aux/IAA的互作網絡非常復雜,但在特定的發育時期存在一對或幾對優勢組合起主要作用,其他組合起輔助作用[26]。迄今為止,ARF和Aux/IAA的互作研究在果實發育中依然存在較大空白。
在植物體的生長素信號轉導過程中還存在ARF與Aux/IAA參與的其他信號轉導途徑。ETT因子(隸屬于擬南芥ARF家族)缺失與Aux/IAA結合的關鍵結構域PBI,但依然在在雌蕊頂部具有生長素調節作用。經研究表明,ETT因子可與一類受生長素直接調控的具有典型堿性螺旋(bHLH)結構的轉錄因子IND(TF)發生互作,使之不需要通過泛素化途徑就可響應生長素調控。該研究中,ETT-TE途徑被認為有助于加快Aux/IAA因子的重新合成,重置生長素對下游基因的影響[70]。
生長素信號轉導相關因子ARF和Aux/IAA在生長素介導的果實發育過程中具有非常重要的調控作用,包括果實與種子的形態建成、果肉膨大和糖分積累等。迄今為止,對ARF、Aux/IAA在果實發育中的調控方式與生物學功能方面的探究取得了一些進展,但是多集中于番茄與草莓等草本植物的轉基因植株層面,而對具體生理指標相關基因的調控方面研究較為匱乏,因此具有廣闊的研究前景。
此外,ARF與Aux/IAA的調控功能在核果類果樹中的研究較少。其主要原因為核果類果樹的轉化體系尚未構建完全,進行ARF與Aux/IAA因子的基因功能驗證比較困難。因此,目前在探究該類果實的ARF與Aux/IAA因子功能時,可根據果實生長類型,探究其在模式植物中的調控作用以及果實發育過程中轉錄水平的變化趨勢,經過體外互作實驗等,對這些因子的功能及作用進行相關研究。
在ARF-Aux/IAA互作方面,其復雜的互作關系賦予了生長素多樣的調控功能和不同的調控方式。目前,有多種成熟的實驗技術可以對蛋白互作關系進行研究,然而由于ARF與Aux/IAA本身互作組合數量比較龐大,且在大部分物種中的功能尚未研究透徹,以致ARF與Aux/IAA互作關系網絡的構建與調控方式的闡明需要更為深入的研究。
[1]Kazan K, Manners JM. Linking development to defense:auxin in plant-pathogen interactions[J]. Trends in Plant Science, 2009, 14(7):373-382.
[2]Guilfoyle TJ. Aux/IAA proteins and auxin signal transduction[J].Trends in Plant Science, 1998, 3(6):205-207.
[3]Guilfoyle TJ, Hagen G. Auxin response factors[J]. Journal of Plant Growth Regulation, 2001, 10(3):453-460.
[4]Shiv B. Tiwari GHTG. The roles of auxin response factor domains in auxin-responsive transcription[J]. Plant Cell, 2003, 15(2):533-543.
[5]Woodward AW, Bartel B. Auxin:regulation, action, and interaction[J]. Annals of Botany, 2005, 95(5):707-735.
[6]Guilfoyle TJ. Chapter 19 - Auxin-regulated genes and promoters[J]. New Comprehensive Biochemistry, 1999, 33 :423-459.
[7]Wang D, Pei K, Fu Y, et al. Genome-wide analysis of the auxin response factors(ARF)gene family in rice(Oryza sativa)[J].Gene, 2007, 394(2):13-24.
[8]Thakur JK, Jain M, Tyagi AK, et al. Exogenous auxin enhances the degradation of a light down-regulated and nuclear-localized OsIAA1,an AUX/IAA protein from rice, via proteasome[J]. Biochimica Et Biophysica Acta, 2005, 1730(3):196-205.
[9]Van HaC, Le DT, Nishiyama R, et al. The auxin response factor transcription factor family in soybean:genome-wide identification and expression analyses during development and water stress[J].DNA Research, 2013, 20(5):511-524.
[10]Singh VK, Jain M. Genome-wide survey and comprehensive expression profiling of Aux/IAA gene family in chickpea and soybean[J]. Frontiers in Plant Science, 2015, 6:918.
[11]Kalluri UC, Difazio SP, Brunner A M, et al. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa[J].BMC Plant Biology, 2007, 7(1):59.
[12]Liu SQ, Hu LF. Genome-wide analysis of the auxin response factor gene family in cucumber[J]. Genetics & Molecular Research Gmr, 2013, 12(4):4317-4331.
[13]王壘, 婁麗娜, 閆立英, 等. 黃瓜果實發育早期Aux/IAA家族部分基因的差異表達分析[J]. 南京農業大學學報, 2011, 34(4):13-17.
[14]Kumar R, Tyagi AK, Sharma AK. Genome-wide analysis of auxin response factor(ARF)gene family from tomato and analysis of their role in flower and fruit development[J]. Molecular Genetics and Genomics, 2011, 285(3):245-260.
[15]Audrandelalande C, Bassa C, Mila I, et al. Genome-wide identification, functional analysis and expression profiling of the Aux/IAA gene family in tomato[J]. Plant & Cell Physiology,2012, 53(4):659-672.
[16]Xie R, Pang S, Ma Y, et al. The ARF, AUX/IAA and GH3 gene families in citrus:genome-wide identification and expression analysis during fruitlet drop from abscission zone A[J].Molecular Genetics and Genomics, 2015, 290(6):2089-2105.
[17]Wan S, Li W, Zhu Y, et al. Genome-wide identification,characterization and expression analysis of the auxin response factor gene family in Vitis vinifera[J]. Plant Cell Reports, 2014,33(8):1365-1375.
[18]?akir B, Kili?kaya O, Olcay A C. Genome-wide analysis of Aux/IAA genes in Vitis vinifera:cloning and expression profiling of a grape Aux/IAA gene in response to phytohormone and abiotic stresses[J]. Acta Physiologiae Plantarum, 2013, 35(2):365-377.
[19]Li H, Ran K, Sun Q. Genome-wide identification and expression analysis of peach auxin response factor gene families[J]. Journal of Plant Biochemistry & Biotechnology, 2016, 25(4):1-9.
[20]焦云, 馬瑞娟, 沈志軍, 等. 桃果實花色素苷積累與ABP1、ARF6表達分析[J]. 中國南方果樹, 2015, 44(1):12-16.
[21]Li SB, Ouyang WZ, Hou XJ, et al. Genome-wide identification,isolation and expression analysis of auxin response factor(ARF)gene family in sweet orange(Citrus sinensis)[J]. Frontiers in Plant Science, 2015, 6:119.
[22] Liu K, Yuan C, Li H, et al. Genome-wide identification and characterization of auxin response factor(ARF)family genes related to flower and fruit development in papaya(Carica papaya L.)[J]. Bmc Genomics, 2015, 16(1):1-12.
[23]Hu W, Zuo J, Hou X, et al. The auxin response factor gene family in banana:genome-wide identification and expression analyses during development, ripening, and abiotic stress[J]. Frontiers in Plant Science, 2015, 6:742.
[24]張敬虎, 潘一山, 王少峰, 等. 柚AUX/IAA基因族的基因注釋分析[J]. 福建熱作科技, 2015(4):5-11.
[25]劉振華, 于延沖, 向鳳寧. 生長素響應因子與植物的生長發育[J]. 遺傳 , 2011, 33(12):1335-1346.
[26]Gray WM, del Pozo JC, Walker L, et al. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana[J]. Genes & Development, 1999, 13(13):1678-1691.
[27]Vernoux T, Brunoud G, Farcot E, et al. The auxin signalling network translates dynamic input into robust patterning at the shoot apex[J]. Molecular Systems Biology, 2011, 7(1):508-508.
[28]Hardtke CS, Ckurshumova W, Vidaurre DP, et al. Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4[J].Development, 2004, 131(5):1089-1100.
[29]Schruff MC, Spielman M, Tiwari S, et al. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division,and the size of seeds and other organs[J]. Development, 2006,133(133):251-261.
[30]Schlereth A, M?ller B, Liu W, et al. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor[J]. Nature, 2010, 464(7290):913-916.
[31]Mallory AC, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes[J]. Plant Cell, 2005, 17(5):1360-1375.
[32]Wang S, Tiwari SB, Hagen G, et al. AUXIN RESPONSE FACTOR7 restores the expression of auxin-responsive genes in mutant Arabidopsis leaf mesophyll protoplasts[J]. Plant Cell, 2005, 17(7):1979-1993.
[33] 楊俊. 擬南芥生長素響應因子ARF17調控花粉壁模式形成[D]. 上海:上海師范大學, 2013.
[34]Przemeck GKH, Mattsson J, Hardtke CS, et al. Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization[J]. Planta, 1996, 200(2):229-237.
[35]Hardtke CS, Berleth T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development[J]. Embo Journal, 1998, 17(5):1405-1411.
[36]Zhao Z, Andersen S U, Ljung K, et al. Hormonal control of the shoot stem-cell niche[J]. Nature, 2010, 465(7301):1089-1092.
[37]Donner TJ, Sherr I, Scarpella E. Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves[J].Development, 2009, 136(19):3235-46.
[38]Wu J, Wang F, Cheng L, et al. Identification, isolation and expression analysis of auxin response factor(ARF)genes in Solanum lycopersicum[J]. Plant Cell Reports, 2011, 30(11):2059-2073.
[39]Goetz M, Hooper LC, Johnson SD, et al. Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato[J]. Plant Physiology, 2007, 145(2):351-366.
[40]Du L, Bao C, Hu T, et al. SmARF8, a transcription factor involved in parthenocarpy in eggplant[J]. Molecular Genetics and Genomics, 2016, 291(1):1-13.
[41]De J M, Wolters-Arts M, Feron R, et al. The Solanum lycopersicum auxin response factor7(Sl ARF7)regulates auxin signaling during tomato fruit set and development[J]. Plant Journal, 2009,57(1):160-170.
[42]Sagar M, Chervin C, Roustant JP, et al. Under-expression of the Auxin Response Factor Sl-ARF4 improves postharvest behavior of tomato fruits[J]. Plant Signaling & Behavior, 2013, 8(10):10-4161.
[43]Sagar M, Chervin C, Mila I, et al. Sl-ARF4, an Auxin Response Factor involved in the control of sugar metabolism during tomato fruit development[J]. Plant Physiology, 2013, 161(3):1362-1374.
[44]Nagpal P, Ellis CM, Weber H, et al. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation[J]. Development, 2005, 132(18):4107-4118.
[45]李慧峰, 冉昆, 何平, 等. 蘋果生長素響應因子(ARF)基因家族全基因組鑒定及表達分析[J]. 植物生理學報, 2015(7):1045-1054.
[46] 朱立新, 李光晨. 面向21世紀課程教材-園藝通論[M]. 第2版. 北京:中國農業大學出版社, 2005.
[47]史夢雅, 張巍, 余佳, 等. 桃生長素反應因子和生長素/吲哚乙酸蛋白家族基因的克隆及表達分析[J]. 園藝學報, 2014,41(3):536-544.
[48]Shen CJ, Wang SK, Bai YH, et al. Functional analysis of the structural domain of ARF proteins in rice(Oryza sativa L.)[J].Journal of Experimental Botany, 2010, 61(14):3971-3981.
[49]Tiwari SB, Hagen G, Guilfoyle TJ. Aux/IAA proteins contain a potent transcriptional repression domain[J]. Plant Cell, 2004,16(2):533-543.
[50]Dreher KA, Brown J, Saw RE, et al. The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness[J]. Plant Cell, 2006, 18(3):699-714.
[51]Wang H, Bouzayen M. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis[J]. Plant Cell, 2005, 17(10):2676-2692.
[52]Szemenyei H, Hannon M, Long JA. TOPLESS mediates auxindependent transcriptional repression during Arabidopsis embryogenesis[J]. Science, 2008, 319(5868):1384-1386.
[53]Rogg LE, Lasswell J, Bartel B. A Gain-of-function mutation in IAA28 suppresses lateral root development[J]. Plant Cell, 2001,13(3):465-480.
[54]Zhang J, Chen R, Xiao J, et al. Isolation and characterization of SlIAA3, an Aux/IAA gene from tomato[J]. Mitochondrial DNA,2007, 18(6):407-414.
[55]Kloosterman B, Visser RG, Bachem CW. Isolation and characterization of a novel potato Auxin/Indole-3-Acetic Acid family member(StIAA2)that is involved in petiole hyponasty and shoot morphogenesis[J]. Plant Physiology & Biochemistry,2006, 44(11-12):766-775.
[56]Yang X, Lee S, So JH, et al. The IAA1 protein is encoded by AXR5 and is a substrate of SCF(TIR1)[J]. Plant Journal, 2004, 40(5):772-782.
[57]Chaabouni S, Jones B, Delalande C, et al. Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth[J]. Journal of Experimental Botany, 2009, 60(4):1349-1362.
[58]Bassa C, Mila I, Bouzayen M, et al. Phenotypes associated with down-regulation of Sl-IAA27 support functional diversity among Aux/IAA family members in tomato[J]. Plant & Cell Physiology,2012, 53(9):1583-1595.
[59]Su L, Bassa C, Audran C, et al. The Auxin Sl-IAA17 transcriptional repressor controls fruit size via the regulation of endoreduplicationrelated cell expansion[J]. Plant & Cell Physiology, 2014, 55(11):1969-1976.
[60]Liu DJ, Chen JY, Lu WJ. Expression and regulation of the early auxin-responsive Aux/IAA genes during strawberry fruit development[J]. Molecular Biology Reports, 2011, 38(2):1187-1193.
[61]Shani E, Salehin M, Zhang Y, et al. Plant stress tolerance requires auxin-sensitive Aux/IAA transcriptional repressors[J]. Current Biology Cb, 2017, 27(3):437-444.
[62]Guilfoyle TJ, Hagen G. Getting a grasp on domain III/IV responsible for Auxin Response Factor-IAA protein interactions[J]. Plant Science, 2012, 190(3):82-88.
[63]Lavy M, Prigge MJ, Tao S, et al. Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins[J]. Elife, 2016, 5 :e13325.
[64]Piya S, Shrestha SK, Binder B, et al. Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis[J]. Frontiers in Plant Science, 2014, 5 :744.
[65]Llères D, Swift S, Lamond AI. Detecting protein-protein interactions in vivo with FRET using multiphoton fluorescence lifetime imaging microscopy(FLIM)[J]. Curr Protoc Cytom, 2007, Chapter 12 :Unit12.
[66]Weijers D, Benkova E, J?ger KE, et al. Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators[J]. Embo Journal, 2005, 24(10):1874-1885.
[67]Tatematsu K, Kumagai S, Muto H, et al. MASSUGU2 encodes aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana[J]. Plant Cell, 2004, 16(2):379-393.
[68]Arase F, Nishitani H, Egusa M, et al. IAA8 involved in lateral root formation interacts with the TIR1 Auxin receptor and ARF transcription factors in Arabidopsis[J]. PLoS One, 2012, 7(8):e43414.
[69]Shen CJ, Bai YH, Wang SK, et al. Expression profile of PIN, AUX/LAX and PGP auxin transporter gene families in Sorghum bicolor under phytohormone and abiotic stress[J]. Febs Journal, 2010,277(14):2954-2969.
[70]Simonini S, Deb J, Moubayidin L, et al. A noncanonical auxinsensing mechanism is required for organ morphogenesis in Arabidopsis[J]. Genes & Development, 2016, 30(20):2286-2296.
Research Progress on Mechanism of ARF and Aux/IAA Regulating Fruit Development and Ripening
HU Xiao1HOU Xu2YUAN Xue2GUAN Dan1LIU Yue-ping2,3
(1.Plant Science and Technology College,Beijing University of Agriculture,Beijing 102206 ;2. College of Biological Science and Engineering,Beijing University of Agriculture,Beijing 102206 ;3. Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees,Beijing 102206)
The auxin is one of key essential plant hormones regulating fruit development and ripening. Aux/IAAs and auxin response factors(ARFs)play central roles in auxin-mediated signal transduction mechanism. ARF proteins combine with the auxin-responsive elements in the promoters of auxin-responding genes to promote or inhibit gene expression. Aux/IAA proteins,through specific binding of their common domains III and IV with ARF,regulate the transcriptional activity of early response genes of auxin. The researches indicate that ARF participates in the regulation of fruit morphology development,hardness,sugar accumulation,etc.;Aux/IAA plays a significant role in pollination and fruit morphology etc. In addition,the interactions of Aux/IAA and ARF or themselves regulate downstream gene expressions,which is the main mechanism of plant response to auxin regulation. In this review,we summarized the structures of ARF and Aux/IAA,the distribution characteristics in varied plants,and the regulating function in fruit ripening development and signal transduction. The research status on the interaction of ARFs and Aux/IAA was also discussed, which will provide knowledge for reveal the mechanism of auxin control of fruit development and ripening.
ARF;Aux/IAA;fruit;development and ripening;regulating mechanism
10.13560/j.cnki.biotech.bull.1985.2017-0506
2017-06-16
2015年度新型生產經營主體科技能力提升工程項目(20150203-01)
胡曉,女,碩士,研究方向:果實發育生理與分子生物學;E-mail:hxiao_0323@sina.com
劉悅萍,女,博士,研究方向:果實發育生理與分子生物學;E-mail:cauping@sina.com
(責任編輯 李楠)