方 磊, 霍松波, 張春麗, 李 興, 陳 潔, 趙 陽
(1. 南京鋼鐵股份有限公司 板材事業(yè)部,南京 210035;2. 東北大學(xué) 軋制技術(shù)及連軋自動化國家重點(diǎn)實(shí)驗(yàn)室,沈陽 110819;3. 東北大學(xué) 材料科學(xué)與工程學(xué)院,沈陽 110819)
中溫中壓容器用鋼13MnNiMoR的熱變形行為研究
方 磊1, 霍松波1, 張春麗2, 李 興2, 陳 潔2, 趙 陽3
(1. 南京鋼鐵股份有限公司 板材事業(yè)部,南京 210035;2. 東北大學(xué) 軋制技術(shù)及連軋自動化國家重點(diǎn)實(shí)驗(yàn)室,沈陽 110819;3. 東北大學(xué) 材料科學(xué)與工程學(xué)院,沈陽 110819)
為制定中溫中壓容器用鋼13MnNiMoR的熱加工工藝提供理論依據(jù)并實(shí)現(xiàn)其工業(yè)化生產(chǎn),利用單道次熱壓縮模擬實(shí)驗(yàn)研究了變形溫度(900~1150 ℃)和應(yīng)變速率(0.01~1 s-1)對其熱變形行為的影響.結(jié)果表明:當(dāng)應(yīng)變速率低于0.1 s-1時,新晶粒有足夠的時間進(jìn)行形核和長大,奧氏體容易發(fā)生動態(tài)再結(jié)晶;當(dāng)變形溫度降低或應(yīng)變速率增加時,實(shí)驗(yàn)鋼在變形過程中主要發(fā)生動態(tài)回復(fù),流變應(yīng)力也隨之提高.基于測定的流變應(yīng)力曲線,通過擬合得到實(shí)驗(yàn)鋼在熱變形時的應(yīng)力指數(shù)為4.29,動態(tài)再結(jié)晶激活能為319 kJ/mol,據(jù)此建立了13MnNiMoR鋼在高溫變形時的熱加工方程.
13MnNiMoR鋼;壓力容器用鋼;熱變形;動態(tài)再結(jié)晶;激活能
壓力容器鋼主要應(yīng)用于鍋爐、化工原料儲罐、石油和液化天然氣儲罐等承壓容器方面,其特殊工作環(huán)境對其各項(xiàng)性能指標(biāo)都有較高的要求[1, 2].隨著國民經(jīng)濟(jì)的快速發(fā)展和壓力容器設(shè)備的大型化,對壓力容器鋼板的技術(shù)要求逐步提高,需求量也逐漸增加.
作為一種中溫中壓容器用鋼,13MnNiMoR鋼目前已用于制造高壓鍋爐汽包、核能容器及其他耐高壓容器等.與傳統(tǒng)的容器用鋼相比,它具有較高的高溫屈服強(qiáng)度、優(yōu)良的抗裂紋敏感性、良好的焊接和加工特性等優(yōu)異性能.雖然這類鋼的應(yīng)用前景十分廣闊,但13MnNiMoR鋼的生產(chǎn)還主要集中在國內(nèi)有為數(shù)不多的企業(yè),如寶鋼、武鋼、萊鋼、鞍鋼、南陽漢冶鋼廠等[3, 4].就研究現(xiàn)狀而言,目前已有較多關(guān)于13MnNiMoR鋼熱處理工藝、焊接性能和耐腐蝕性等方面的報(bào)道,其組織性能的控制手段已較為成熟[5-7].然而,由于生產(chǎn)13MnNiMoR鋼的廠家相對較少,關(guān)于其熱變形行為以及加工工藝與性能方面的報(bào)道還很少.本文以開發(fā)和生產(chǎn)此種性能優(yōu)越的容器鋼為背景,利用在熱模擬實(shí)驗(yàn)機(jī)上單道次壓縮實(shí)驗(yàn)得到13MnNiMoR鋼在不同溫度和應(yīng)變速率的流變曲線,分析其在熱變形動態(tài)回復(fù)和再結(jié)晶行為;最終建立13MnNiMoR鋼的流變應(yīng)力模型,為后續(xù)的工業(yè)化生產(chǎn)中熱加工工藝的制定提供參考.

單道次壓縮工藝路線如圖1所示,首先將試樣以10 ℃/s加熱速率升溫至1 200 ℃后保溫3min使試樣溫度均勻,接著以5 ℃/s的速率冷卻至變形溫度.為保證試樣溫差內(nèi)外均勻,變形前在變形溫度下繼續(xù)保溫20 s,然后以一定應(yīng)變速率對試樣進(jìn)行單道次壓縮變形.變形溫度為900~ 1 150 ℃,應(yīng)變速率為0.01~10 s-1,變形過程中真應(yīng)力和真應(yīng)變數(shù)據(jù)由系統(tǒng)自動采集.為表征13MnNiMoR鋼奧氏體晶粒在不同條件下的熱變形行為,變形結(jié)束后將試樣立即水冷至室溫以保留熱變形后的組織狀態(tài).變形后的試樣在熱電偶的焊點(diǎn)處沿軸向切開,將其表面進(jìn)行粗磨和機(jī)械拋光后用過飽和苦味酸水溶液加少量海鷗牌洗滌劑在60 ℃左右熱浸蝕出奧氏體晶界;最終得到的奧氏體組織在光學(xué)顯微鏡(LEICA Q550 IW)下進(jìn)行觀察.

表1 13MnNiMoR鋼化學(xué)成分(質(zhì)量分?jǐn)?shù))

圖1 單道次壓縮實(shí)驗(yàn)方案Fig.1 Schema of single pass compression test
圖2為所設(shè)計(jì)的13MnNiMoR鋼在不同變形條件下的真應(yīng)力-真應(yīng)變關(guān)系曲線.在變形初期,奧氏體內(nèi)部變形位錯大量累積,材料加工硬化現(xiàn)象明顯;隨著應(yīng)變程度的增大,流變應(yīng)力迅速增大.由于變形溫度較高,實(shí)驗(yàn)鋼發(fā)生動態(tài)回復(fù)或動態(tài)再結(jié)晶的軟化作用隨著變形程度的增大而逐漸增強(qiáng).因此,流變應(yīng)力在變形初期的增大幅度隨應(yīng)變的增大而逐漸減小,最后達(dá)到峰值.當(dāng)變形溫度升高或應(yīng)變速率降低時,熱變形過程中的軟化作用明顯,產(chǎn)生峰值應(yīng)力時所需的應(yīng)變也較小.圖2(a) 和2(b)分別為應(yīng)變速率0.01 s-1和 0.1 s-1時13MnNiMoR鋼的真應(yīng)力-真應(yīng)變曲線,可以看出,流變應(yīng)力隨應(yīng)變的增加迅速達(dá)到峰值后,又隨著應(yīng)變的增加而逐漸下降,最終達(dá)到穩(wěn)定狀態(tài).此結(jié)果表明,在這兩種應(yīng)變速率條件下奧氏體組織均發(fā)生了一定程度的動態(tài)再結(jié)晶過程.當(dāng)應(yīng)變速率為1 s-1時(圖2(c)),僅在1 150 ℃時流變曲線呈現(xiàn)動態(tài)再結(jié)晶特征.當(dāng)變形溫度降低,流變應(yīng)力在達(dá)到峰值后基本保持不變,實(shí)驗(yàn)鋼在變形時僅發(fā)生動態(tài)回復(fù)過程.當(dāng)應(yīng)變速率為10 s-1,實(shí)驗(yàn)鋼的軟化方式均以動態(tài)回復(fù)為主,如圖2(d)所示.
在典型變形條件下,13MnNiMoR鋼的奧氏體組織照片如圖3.當(dāng)變形溫度為900 ℃,應(yīng)變速率為0.1 s-1時(圖3(a)),實(shí)驗(yàn)鋼在下熱變形的奧氏體晶粒多呈壓扁狀態(tài),僅在鋸齒狀奧氏體晶界處可見一些細(xì)小的新晶粒,此時動態(tài)再結(jié)晶發(fā)生的程度較小.當(dāng)溫度超過1 000 ℃時,如圖3(b)~3(c),較高的變形溫度提高了再結(jié)晶奧氏體形核和長大的驅(qū)動力;實(shí)驗(yàn)鋼在熱變形時發(fā)生較為完全的動態(tài)再結(jié)晶過程,并且再結(jié)晶晶粒尺寸隨溫度升高而逐漸增大.當(dāng)變形溫度為1 000 ℃,應(yīng)變速率分別為0.01 s-1、1 s-1和10 s-1時熱變形組織如圖3(d)~3(f)所示.當(dāng)應(yīng)變速率為0.01 s-1時,奧氏體發(fā)生了完全動態(tài)再結(jié)晶過程,奧氏體呈等軸狀態(tài).隨著應(yīng)變速率的增大,動態(tài)再結(jié)晶過程沒有足夠的時間,在熱變形時奧氏體僅發(fā)生了動態(tài)回復(fù)過程,在變形后晶粒呈壓扁狀態(tài).總的來說,奧氏體的組織形態(tài)與流變應(yīng)力曲線得到的結(jié)果基本吻合.

圖2 13MnNiMoR鋼在不同應(yīng)變速率下的真應(yīng)力-應(yīng)變曲線Fig.2 Flow stress curves of 13MnNiMoR steel at different strain rates

圖3 13MnNiMoR鋼在典型變形條件下的奧氏體組織照片F(xiàn)ig.3 Optical micrographs of the microstructures for 13MnNiMoR steel under different deformation conditions(a)—900 ℃, 0.1 s-1; (b)—1 000 ℃, 0.1 s-1; (c)—1 100 ℃, 0.1 s-1; (d)—1 000 ℃, 0.01 s-1; (e)—1 000 ℃, 1 s-1; (f)—1 000 ℃, 10 s-1

圖4 13MnNiMoR鋼熱變形時應(yīng)變速率(a)和變形溫度(b)與峰值應(yīng)力的關(guān)系Fig.4 Relationship among strain rate (a), deformation temperature (b) and peak stress for 13MnNiMoR steel
熱變形過程中,變形溫度和變形速率對鋼的動態(tài)再結(jié)晶的影響可以由Zener-Hollomon參數(shù)(Z參數(shù))來表征[8],即:
(1)


(2)
式中,A、α為與溫度無關(guān)的常數(shù),A為結(jié)構(gòu)因子(s-1),α為應(yīng)力水平參數(shù)(MPa-1),n為應(yīng)力指數(shù).α的計(jì)算方法目前尚不統(tǒng)一,本文直接取為常用值0.012[9].對式(2)兩邊取自然對數(shù),可得:
(3)
根據(jù)圖2中高溫壓縮時的流變應(yīng)力曲線,通過軟件處理,可得到不同變形溫度和變形速率下峰值應(yīng)力的大小.如圖4(a),當(dāng)變形溫度一定時,對式(3)求偏導(dǎo)可得:

(4)

(5)
對不同變形溫度下ln sinh(ασp)]和1/T的數(shù)據(jù)點(diǎn)進(jìn)行線性擬合,通過線性擬合后得到不同應(yīng)變速率時斜率的平均值,再乘以Rn后即得所設(shè)計(jì)的13MnNiMoR鋼動態(tài)再結(jié)晶的激活能QD值為319 kJ/mol(見4(b)).根據(jù)對典型普通低合金鋼的研究,如20MnNiMo鋼的動態(tài)再結(jié)晶激活能為373 kJ/mol,Q235鋼動態(tài)再結(jié)晶激活能為352.6 kJ/mol[10-11].考慮到成分的差異,本文計(jì)算得到的13MnNiMoR鋼動態(tài)再結(jié)晶的激活能是合理的.
計(jì)算得到QD后,根據(jù)式(1)可以得到不同變形溫度和應(yīng)變速率下的Z值,結(jié)合式(2)可得:
Z=Aln[sinh(ασp)]n
(6)
對式(6)兩邊取自然對數(shù),可得:
lnZ=lnA+nln[sinh(ασp)]
(7)
如圖5所示,根據(jù)不同變形條件下Z參數(shù)進(jìn)行線性擬合,對擬合直線的截距進(jìn)行換算即可求得A為1.76×1014.此時,模型擬合時的相關(guān)性系數(shù)為0.93,說明計(jì)算得到的模型較為可靠.將求得的所有參數(shù)代入式(2),得到13MnNiMoR鋼的熱加工方程為:


(8)

圖5 13MnNiMoR鋼熱變形時峰值應(yīng)力與Z參數(shù)間的關(guān)系Fig.5 Relationship between peak stress and parameter Z for 13MnNiMoR steel
(1) 在900~ 1 150 ℃ 的變形溫度范圍內(nèi),13MnNiMoR鋼在應(yīng)變速率小于0.1 s-1時容易發(fā)生動態(tài)再結(jié)晶.當(dāng)應(yīng)變速率增加或變形溫度降低時,實(shí)驗(yàn)鋼在熱變形時的軟化過程逐漸轉(zhuǎn)變?yōu)閯討B(tài)回復(fù)過程,變形時的峰值應(yīng)力也逐漸上升.
(2) 通過數(shù)據(jù)擬合,得到13MnNiMoR鋼在熱變形時的應(yīng)力指數(shù)是4.29,發(fā)生動態(tài)再結(jié)晶的激活能為319 kJ/mol.
[1] 花卉, 趙麗娟, 徐莉. 淺談鍋爐壓力容器用鋼的要求和種類[J]. 江蘇鍋爐, 2011 (1): 25-29.
(Hua Hui, Zhao Lijuan, Xu Li. Requirements and types of boiler and pressure vessel steel [J]. Jiangsu Boiler, 2011 (1): 25-29.)
[2] 周群英. 13MnNiMoNbR鋼板在鍋爐壓力容器制造中的應(yīng)用[J]. 發(fā)電設(shè)備, 2001, 15(2): 41-43.
(Zhou Qunying. Application of 13MnNiMoNbR steel plates for pressure vessels of boiler [J]. Power Equipment, 2001, 15(2): 41-43.)
[3] 周平, 王月香, 麻衡, 等. 13MnNiMoR熱處理工藝對組織性能影響規(guī)律的研究[J]. 萊鋼科技, 2012, 36(1): 51-53.
(Zhou Ping, Wang Yuexiang, Ma Heng,etal. Effects of heat treatment on microstructure and mechanical properties of 13MnNiMoR [J]. Laigang Science and Technology, 2012, 36(1): 51-53.)
[4] 高照海, 許少普, 崔冠軍, 等. 壓力容器用特厚13MnNiMoR鋼種的研制[J]. 山西冶金, 2010, 33(6): 4-6.
(Gao Zhaohai, Xu Shaopu, Cui Guanjun,etal. Development of 13MnNiMoR specially thick steel plate for pressure vessel [J]. Shanxi Metallurgy, 2010, 33(6): 4-6.)
[5] 麻衡, 潘文東, 周平, 等. 熱處理工藝對13MnNiMoR壓力容器用鋼組織和性能的影響[J]. 金屬熱處理, 2012, 37(8): 20-23.
(Ma Heng, Pan Wendong, Zhou Ping,etal. Effects of heat treatment on microstructure and mechanical properties of 13MnNiMoR pressure vessel steel [J]. Heat Treatment of Metals, 2012, 37(8): 20-23.)
[6] 潘伍覃. 13MnNiMoR鋼制容器的焊接工藝[J]. 焊接技術(shù), 2011, 40(2): 63-64.
(Pan Wutan. Welding process of 13MnNiMoR pressure vessel steel [J]. Welding Techology, 2011, 40(2): 63-64.)
[7] Geng L Y, Gong J M, Wang Q,etal. Research on corrosion behaviors of 13MnNiMoR steel weld joint in EO reactor service environment [J]. Advanced Materials Research, 2012, 509: 156-160.
[8] Zener C, Hollomon J H. Effect of strain rate upon the plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22-32.
[9] 張維娜, 劉振宇, 王國棟. 高錳TRIP鋼熱變形行為研究[J]. 東北大學(xué)學(xué)報(bào)(自然科學(xué)版), 2010, 31(11): 1582-1585.
(Zhang, Weina, Liu Zhenyu, Wang Guodong. Hot deformation behavior of high-manganese TRIP steel [J]. Journal of Northeastern University, 2010, 31(11): 1582-1585.)
[10] 權(quán)國政, 余春堂, 劉瑩瑩, 等. 20MnNiMo鋼熱塑性變形與動態(tài)再結(jié)晶軟化的耦合行為[J]. 材料熱處理學(xué)報(bào), 2013, 34(8): 177-183.
(Quan Guozheng, Yu Chuntang, Liu Yingying,etal. Characterization of dynamic rescrystallization behavior of 20MnNiMo steel by thermal deformation [J]. Transactions of Materials and Heat Treatment, 2013, 34(8): 177-183.)
[11] 張麥倉, 董建新, 曾燕屏, 等. Q235低碳鋼高溫變形過程的動態(tài)組織演化分析[J]. 北京科技大學(xué)學(xué)報(bào), 2005, 27(2): 183-186.
(Zhang Maicang, Dong Jianxin, Zeng Yanping,etal. Dynamical microstructure evolution of Q235 low carbon steel during high temperature deformation [J]. Journal of University of Science and Thchnology Beijing, 2005, 27(2): 183-186.)
Hotdeformationbehaviorof13MnNiMoRpressurevesselsteel
Fang Lei1, Huo Songbo1, Zhang Chunli2, Li Xing2, Chen Jie2, Zhao Yang3
(1. Plate Steel Business Division, Nanjing Iron and Steel Co. Ltd., Nanjing 210035, China; 2. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China; 3. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China)
In order to provide a theoretical basis for hot working technologies, the hot deformation behavior of 13MnNiMoR pressure vessel steel was studied by a single-pass compressive deformation test at elevated temperatures to explore effects of deformation temperature (950~1150 ℃) and strain rate (0.01~1 s-1) on deformation. The results showed that dynamic recrystallization is easy to occur in austenite when strain rate is lower than 0.1 s-1because a new austenite has enough time to nucleate and grow. The main softening mechanism of this steel changes from dynamic recrystallization to dynamic recovery with decreasing temperature and increasing strain rate. Through data fitting, the stress exponent and activation energy for dynamic recrystallization were determined to be 4.29 and 319 kJ/mol. Finally, the hot working equation of 13MnNiMoR steel was established on the basis of compressive flow stress curves.
13MnNiMoR steel; pressure vessel steel; hot working; dynamic recrystallization; activation energy
10.14186/j.cnki.1671-6620.2017.04.007
TG 335.3
A
1671-6620(2017)04-0281-05