999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

數學歸納法的教學實踐與思考

2018-01-11 07:43:43福建省福安市第二中學阮云慶
數學大世界 2017年34期
關鍵詞:數學方法教學

福建省福安市第二中學 阮云慶

數學歸納法是數學證明中的一種重要方法,其證明過程的兩個步驟缺一不可。通過反復練習與強調也難以把握這一方法的實質,體會其辯證的思想策略和內涵。為什么證題時一定要分兩步進行?為什么證了這兩步之后能對無窮多個自然數結論成立?學生感到困惑、茫然。除了學生的思維和認識上的局限外,另一個重要原因是教師對教材處理不當引起的。以下談談自己的教學實踐與思考。

一、理解數學歸納法原理的內涵

1.數學歸納法兩個步驟的辯證關系

數學歸納法是通過“有限”來解決“無限”的一種遞推證明方法。它的證明有兩個步驟,第一步是遞推的基礎,第二步是遞推的依據,兩者之間的抽象關系是學生認知的障礙。如何將學生原有的經驗轉換成適合于新情況所需要的認知結構,一個簡捷的途徑是:將現有的認知結構融合新知識,把新知識同化于現有認知結構。因此,我將原理想象成一個游戲模型或多米諾骨牌,將一排錄音磁帶按適當距離豎直排列,以磁帶倒下表示命題正確,推倒第一塊(表示n取第一個值n0時,命題正確),要保證所有的磁帶都倒下(n∈N時命題正確)必須滿足什么條件?每一塊倒下(n=k,k∈N,k≥n0時命題正確),都能保證其后面的一塊倒下(n=k+1時命題正確),從而使數學歸納法的本質直觀化。

2.驗證n取第一個值時命題正確的必要性

由于教師強調,學生自然認同數學歸納法的兩個步驟,但對驗證值取第一個值時命題正確的必要性的認識可能還不夠深刻,需要設計如下式子的證明,幫助學生體會初始值驗證的重要性。

證明:2+4+6+…+2n=n2+n+1(n∈N)。

學生:假設當n=k時,等式成立,即2+4+6+…+2k=k2+k+1,則當n=k+1時,2+4+6+…+2k+2(k+1)=k2+k+1+2(k+1)=(k+1)2+(k+1)+1,∴n=k+1時,等式成立。所以對所有的正整數n,都有等式成立。

學生并沒有認識到遞推基礎的重要性,只知數學歸納法的步驟,而沒有領悟到原理和實質。所以在數學歸納法的教學實踐中遇到學生種種的錯誤或困難是很正常的。

二、遞推過程中的證題技巧與方法

數學歸納法應用于五類問題的證明,即恒等式、整除性問題、條件等式、不等式和某些幾何問題的證明,從證題模式看似乎簡單、呆板,其實在遞推過程中體現出的證題技巧、方法和數學思想,對培養學生的邏輯思維能力和解題能力卻不容置疑。其基本思路是:從歸納假設出發,分析P(k)與P(k+1)的差異及聯系,利用折項、添項、放縮、作差、分析等手段,或從P(k+1)中分離出P(k)再進行局部調整,也可以考慮尋求二者的“接口”,以便過渡。其中體現了高超的數學技巧和豐富的數學思想方法以及對學生的能力要求和教師的教學技能的挑戰。

例1 當n∈N,n≥2時,求證:

證明:(1)當n=2時,不等式成立。

(2)設n=k時,不等式成立,即則n=k+1時,(學生往往以為“n=k”到“n=k+1”增加一項),∴n=k+1時,不等式成立。

由(1)(2)可知對于任意n∈N(n≥2),不等式都成立。

三、錯誤辨析的教學環節

數學歸納法的證題步驟學生較易接受,但對原理的理解要靠方法來揭示和解決,巧妙地設計一些典型的證題錯誤進行辨析,可提高教材實質性內容的深度,引發學生在認識上產生適當的“矛盾”和“沖突”,使他們發覺在理解數學歸納法時還存在下列不當之處。

證明:(1)當n=1時,結論正確。

(2)設n=k時,結論正確,即成立,則n=k+1時,

當n=k+1時,結論成立。

所以由(1)(2)可知,對于任意n∈N,都有

上面的解法貌似是數學歸納法,但第二步驟推理沒有運用n=k時的歸納假設,這種推理實質上是沒有根據的,缺失傳遞性。

例3 對任意的自然數n,求證:

證明:(1)當n=1時,不等式顯然成立。

(2)假設n=k時,不等式成立,即則n=k+1時,

∴n=k+1時,不等式成立。

由(1)(2)可知,對任意的自然數n,都有

在第一步驗證n=n0后,數學歸納法要求第二步所考慮的k必須滿足k≥n0,本題第二步成立要求k≥2,因此必須依次驗證n=1和n=2時不等式成立。

證明:(1)當n=1時,a1=1,所以不等式成立。

(2)假設n=k時命題正確,即有成立,則n=k+1時,

∴n=k+1命題正確。

所以由(1)(2)知對于任意n∈N,都有命題正確。

分析:上述證明犯了偷換歸納假設錯誤,假設當n=k時,與 當n=k+1時中的 不同取值,于是不能將作為歸納假設進行遞推。由則應用此不等式結合分析法實施轉化才是正理。

4.猜想與證明

數學命題的論證通常始于不完全歸納,再加以邏輯推理的證明。數學歸納法從論證的方法上綜合了歸納和演繹,這種通過“觀察—歸納—猜想—證明”發現問題和解決問題的方法,是培養學生探索新問題、歸納新方法、培養數學能力和創新思維的金鑰匙。

猜想:an=2n-1,Sn=n2。可用數學歸納法證明此猜想的正確(證明略)。從特殊到一般也符合人類的認知規律,合情推理和演繹推理在這兒相得益彰、各領風騷。

數學教育家弗賴登塔爾認為,學習數學歸納法的正確途徑是向學生提出一些必須用數學歸納法才能解決的問題,迫使他們直觀地去使用這個方法。在學生發現和懂得了這個方法后,再去幫助他們用抽象形式把它敘述出來。數學歸納法的教學不簡單,需要師生的默契配合,需要師生數學素養的提高,需要學生思維能力的有效訓練,數學教學也需要時間,靜待花開。

猜你喜歡
數學方法教學
微課讓高中數學教學更高效
甘肅教育(2020年14期)2020-09-11 07:57:50
“自我診斷表”在高中數學教學中的應用
東方教育(2017年19期)2017-12-05 15:14:48
對外漢語教學中“想”和“要”的比較
唐山文學(2016年2期)2017-01-15 14:03:59
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
用對方法才能瘦
Coco薇(2016年2期)2016-03-22 02:42:52
四大方法 教你不再“坐以待病”!
Coco薇(2015年1期)2015-08-13 02:47:34
捕魚
數學也瘋狂
跨越式跳高的教學絕招
體育師友(2013年6期)2013-03-11 18:52:18
主站蜘蛛池模板: 国产尤物视频网址导航| 正在播放久久| 免费一级毛片不卡在线播放| 国产高清在线精品一区二区三区| 黄色污网站在线观看| av无码久久精品| 69免费在线视频| 思思热精品在线8| 性喷潮久久久久久久久| 亚洲欧美激情小说另类| 九九线精品视频在线观看| 99伊人精品| 亚洲国产中文在线二区三区免| 日韩一级二级三级| 毛片基地视频| 日韩中文无码av超清| 美女视频黄频a免费高清不卡| 色综合综合网| 色香蕉影院| 亚洲高清免费在线观看| 国产欧美日韩在线一区| 91热爆在线| 国产精品视频导航| 亚洲一区二区三区麻豆| 国产成人凹凸视频在线| 2020国产在线视精品在| 国产69囗曝护士吞精在线视频| 亚洲精品国产日韩无码AV永久免费网| 欧美日韩国产在线观看一区二区三区| 国产高清免费午夜在线视频| 成人亚洲视频| 亚洲码在线中文在线观看| 亚洲国产成人久久77| 3p叠罗汉国产精品久久| 色婷婷视频在线| 暴力调教一区二区三区| 激情五月婷婷综合网| 中文字幕在线欧美| 99久久精品无码专区免费| 五月婷婷亚洲综合| 国产成人1024精品| 草草影院国产第一页| 天堂成人在线| 国产在线自乱拍播放| 色综合成人| 亚洲欧美一区二区三区麻豆| 亚洲欧美日韩另类在线一| 热热久久狠狠偷偷色男同| 精品国产免费观看| 国产女人在线视频| 国产精欧美一区二区三区| 99视频免费观看| 国产99在线| 五月婷婷综合网| 国产成人高清在线精品| 国产喷水视频| 高清国产在线| 国产欧美在线观看视频| 亚洲一区二区在线无码| 在线播放精品一区二区啪视频| 国产黄色片在线看| 性网站在线观看| 亚洲日韩精品无码专区97| 亚洲成人免费看| 免费欧美一级| 伊人激情综合网| 国产午夜一级淫片| 久久久亚洲色| 亚瑟天堂久久一区二区影院| 国产女同自拍视频| 91免费在线看| 色综合久久88色综合天天提莫| 欧美综合区自拍亚洲综合绿色 | 中文字幕在线看视频一区二区三区| 国产欧美综合在线观看第七页| 成人午夜福利视频| 欧美在线视频a| 日本高清在线看免费观看| 香蕉综合在线视频91| 久久黄色小视频| 一区二区三区四区日韩| 在线观看精品国产入口|