999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

同一多元函數(shù)條件極值問(wèn)題的三種求解方法

2018-03-20 21:54:16馬林

馬林

【摘要】本文針對(duì)同一常見(jiàn)多元函數(shù)條件極值的實(shí)際問(wèn)題,建立模型,應(yīng)用基本不等式法、等式約束極值的代入法、拉格朗日乘數(shù)法進(jìn)行求解,一題多解、層層遞進(jìn)激發(fā)學(xué)生學(xué)習(xí)興趣.

【關(guān)鍵詞】條件極值;基本不等式;等式約束;拉格朗日乘數(shù)法

多元函數(shù)極值是高等數(shù)學(xué)中十分重要的知識(shí)點(diǎn),分為無(wú)條件極值和條件極值兩大類(lèi),條件極值問(wèn)題因其考慮約束條件,通常會(huì)復(fù)雜一些,有時(shí)候條件極值問(wèn)題可以通過(guò)代入法轉(zhuǎn)化為無(wú)條件極值問(wèn)題,文獻(xiàn)[1]中討論了多元函數(shù)條件極值的四種求解方法,文獻(xiàn)[2]借助于多元函數(shù)極值的應(yīng)用解決了生活實(shí)際問(wèn)題.本文將對(duì)同一常見(jiàn)多元函數(shù)條件極值的實(shí)際問(wèn)題,應(yīng)用基本不等式、等式約束極值的代入法和拉格朗日乘數(shù)法進(jìn)行求解,幫助學(xué)生多層次多角度地分析問(wèn)題和解決問(wèn)題.

實(shí)際問(wèn)題[3] 某工廠(chǎng)要用鐵板做成一個(gè)體積為2 m3的有蓋長(zhǎng)方體水箱,問(wèn)長(zhǎng)、寬、高各取怎樣的尺寸時(shí),才能使用料最省?

首先依據(jù)題意,建立模型,設(shè)長(zhǎng)、寬、高分別為x米、y米、z米,那么xyz=2,此水箱所用材料的面積

S=2(xy+yz+xz)(x>0,y>0,z>0).

下面將分別用三種方法來(lái)求出S的最小值,即用料最省的值.

一、基本不等式法

由基本不等式,當(dāng)a>0,b>0時(shí),a+b2≥ab,當(dāng)且僅當(dāng)a=b時(shí)等號(hào)成立,即算數(shù)平均數(shù)大于幾何平均數(shù),它可以推廣到3個(gè)至n個(gè)的一般情形,即當(dāng)x1,x2,…,xn>0時(shí),

x1+x2+…+xnn≥nx1x2…xn.

當(dāng)且僅當(dāng)x1=x2=…=xn時(shí)等號(hào)成立.

由此,上述實(shí)際問(wèn)題中,x>0,y>0,z>0,則

S=2(xy+yz+xz)≥2·33xy·yz·xz=63(xyz)2=634.

當(dāng)且僅當(dāng)xy=yz=xz即x=y=z=32米時(shí),S達(dá)到最小634 m2,即水箱所用的材料最省.

同時(shí),在使用基本不等式法時(shí),也可以選擇另外一種途徑,在S中先代入等式約束條件z=2xy,則

S=2xy+2x+2y≥2·33xy·2x·2y=634.

當(dāng)且僅當(dāng)xy=2x=2y即x=y=z=32米時(shí),S達(dá)到最小,材料最省.

基本不等式法可推廣到多元函數(shù),在更高維度亦適用,鑒于其靈活多變性,使得它在計(jì)算量上比后面兩種方法少許多,它精妙地簡(jiǎn)化運(yùn)算,但使用的前提限制條件頗多,適用面窄,在其他實(shí)際問(wèn)題中,基本不等式法可以反過(guò)來(lái)應(yīng)用,計(jì)算目標(biāo)函數(shù)最大值.

二、等式約束極值的代入法

在面積函數(shù)S中將等式約束條件代入,

S=2xy+2x+2y(x>0,y>0).

可見(jiàn)材料面積S是x和y的二元函數(shù),按題意,我們要計(jì)算出S的最小值,只需解方程組

Sx=2y-2x2=0,Sy=2x-2y2=0,

得到唯一駐點(diǎn)x=y=32.由題意知水箱所用材料面積的最小值一定存在,函數(shù)S又只有唯一駐點(diǎn),因此該駐點(diǎn)即為所求最小值點(diǎn),從而當(dāng)x=y=z=32米時(shí),水箱所用的材料最省.

三、拉格朗日乘數(shù)法

根據(jù)題意知:

約束條件xyz-2=0,

目標(biāo)函數(shù)S=2(xy+yz+xz),

從而建立拉格朗日函數(shù)

L(x,y,z,λ)=2(xy+yz+xz)+λ(xyz-2),

得方程組Lx=2(y+z)+λyz=0,Ly=2(x+z)+λxz=0,Lz=2(y+x)+λxy=0,

兩兩相除化簡(jiǎn)得y+zx+z=yx,x+zy+x=zy,

進(jìn)而解得x=y=z.

將其代入約束條件中,得唯一可能的極值點(diǎn)x=y=z=32,由問(wèn)題本身意義知,該極值點(diǎn)即為最小值點(diǎn),此時(shí)水箱用料最省.

拉格朗日乘數(shù)法思路清晰,是求解一般多元函數(shù)條件極值問(wèn)題的經(jīng)典方法,因其需計(jì)算多元方程組,任務(wù)繁重,而使其靈巧性比基本不等式略遜一籌.

四、小 結(jié)

本文對(duì)多元函數(shù)條件極值中同一實(shí)際問(wèn)題建立模型,分析討論了三種解題方法,基本不等式法靈活多變,適用面較窄,等式約束極值的代入法和拉格朗日乘數(shù)法是求解一般條件極值問(wèn)題的經(jīng)典方法.本文一題多解,由淺入深、層層遞進(jìn),可以培養(yǎng)學(xué)生的發(fā)散和創(chuàng)新思維,幫助學(xué)生更有效地理解和掌握多元函數(shù)極值這一重要知識(shí)點(diǎn),讓其感受數(shù)學(xué)知識(shí)在解題時(shí)的層次提升,從而激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣.

【參考文獻(xiàn)】

[1]曹宏舉,等.多元函數(shù)條件極值的四種求解方法[J].高等數(shù)學(xué)研究,2017(2):21-23.

[2]趙澤福.多元函數(shù)極值的應(yīng)用分析[J].長(zhǎng)春工業(yè)大學(xué)學(xué)報(bào),2016(1):98-101.

[3]吳贛昌.高等數(shù)學(xué)(下冊(cè)):第4版[M].北京:中國(guó)人民大學(xué)出版社,2011.

主站蜘蛛池模板: 中文国产成人精品久久| 欧美yw精品日本国产精品| 在线免费无码视频| 久久久久亚洲AV成人人电影软件| 国产一级毛片yw| 久久精品午夜视频| 狠狠色丁婷婷综合久久| 国产精品男人的天堂| 亚洲中文字幕在线精品一区| 热久久这里是精品6免费观看| 77777亚洲午夜久久多人| 97se亚洲综合在线韩国专区福利| 免费一级无码在线网站| 国产视频资源在线观看| 亚洲天堂精品视频| 亚洲人人视频| 午夜福利亚洲精品| 国产精品久线在线观看| 国产精品亚洲片在线va| 日日拍夜夜操| 国产主播喷水| 日韩精品毛片| 亚洲欧美在线精品一区二区| 青青青国产视频手机| 日韩精品欧美国产在线| 强奷白丝美女在线观看 | 免费一极毛片| 国产精品女人呻吟在线观看| 国产精女同一区二区三区久| 欧美翘臀一区二区三区| 麻豆国产在线观看一区二区| 99在线视频精品| 日韩精品一区二区三区视频免费看| 国内精品视频| 欧美日韩激情在线| 91精品国产无线乱码在线| 国产成人区在线观看视频| 日本久久网站| 国产国产人成免费视频77777| 国产精品太粉嫩高中在线观看 | 国产一二视频| 国产麻豆va精品视频| 亚洲首页在线观看| 黄色网站不卡无码| 亚洲丝袜第一页| 国产最新无码专区在线| 亚洲第一极品精品无码| 午夜色综合| 亚洲另类第一页| 熟女成人国产精品视频| 欧美成人看片一区二区三区 | 999在线免费视频| 中文字幕免费在线视频| 国产精品专区第1页| 欧美综合中文字幕久久| 亚洲综合色区在线播放2019| 午夜激情福利视频| 欧美视频在线观看第一页| 日韩毛片免费观看| 亚洲国产综合自在线另类| swag国产精品| 国产一区三区二区中文在线| 久久久久亚洲精品成人网 | 亚洲无限乱码| 久久精品国产999大香线焦| 国产高清毛片| 99热国产这里只有精品无卡顿"| 日韩免费毛片视频| 男女性午夜福利网站| 欧美在线导航| 欧美亚洲国产日韩电影在线| 免费观看男人免费桶女人视频| 国产福利一区二区在线观看| 久久精品女人天堂aaa| 亚洲va欧美va国产综合下载| 在线免费无码视频| 澳门av无码| 亚洲成人精品在线| 亚洲精选高清无码| 欧美在线国产| 这里只有精品在线| 亚洲精品日产AⅤ|