張媛芳
摘要:數學思想方法不僅是數學的精髓,也是數學教學的靈魂,更是體現數學本質的重要方面和評價數學教學的主要依據。掌握科學的數學思想方法對提升學生的思維品質,對數學學科的后繼學習,對其它學科的學習,乃至對學生的終身發展都具有十分重要的意義。
關鍵詞:小學數學;數學思想
作為一名小學教師,每天的課堂教學我們總是在有意或無意的滲透著數學思想方法。在小學數學教學中如何滲透著數學思想方法,談談自己的看法。
一、提高教師認識,挖掘數學思想方法
作為教師首先要從思想上不斷提高對滲透數學思想方法重要性的認識,把掌握數學知識和滲透數學思想方法同時納入教學目的,把數學思想方法教學的要求融入備課環節。其次要深入鉆研教材,努力挖掘教材中可以進行數學思想方法滲透的各種因素,對于每一章每一節,都要考慮如何結合具體內容進行數學思想方法滲透,滲透哪些數學思想方法,怎么滲透,滲透到什么程度,應有一個總體設計,提出不同階段的具體教學要求。在小學數學教學中,教師不能僅僅滿足于學生獲得正確知識的結論,而應該著力于引導學生對知識形成過程的理解。讓學生逐步領會蘊涵其中的數學思想方法。
二、備課時充分挖掘數學思想方法
如果課前教師對教材內容的教學適合滲透哪些思想方法一無所知,那么課堂教學就不可能有的放矢。因此我們在備課時,不應只見直接寫在教材上的數學基礎知識與技能,而是要進一步鉆研教材,創造性地使用教材,挖掘隱含在教材中的數學思想方法,并在教學目標中明確寫出滲透哪些數學思想方法,并設計數學活動落實在教學預設的各個環節中,實現數學思想方法有機地融合在數學知識的形成過程中。其實,每冊教材都有數學思想方法的滲透,我們每冊選取有代表性的單元。這相對所有教學內容只是冰山一角。為此,我在研讀教材時,常常要多問自己幾個為什么,將教材的編排思想內化為自己的教學思想,如:怎樣讓學生經歷知識的產生與發展的過程?怎么樣才能喚起學生進行深層次的數學思考?如何激發學生主動探究新知識的積極性?如何依據教材適時地滲透數學思想方法等等。只有我自己做到胸有成竹,方能給學生滲透相應的數學思想。
三、重視課堂教學,滲透數學思想方法
課堂教學中,學生是學習的主人。在學習過程中,要引導學生積極主動地參與,親自去發現問題、解決問題、掌握方法。對于數學思想方法的學習也不例外,在數學教學中,解題思路的探索過程是最基本的活動形式之一,數學問題的解答過程是對數學思想方法親身體驗和獲得的過程,也是通過運用對其加深認識和理解的過程。為了更好地在小學數學課堂教學中滲透數學思想方法,教師不僅要對教材進行研究,潛心挖掘,而且還要講究思想滲透的手段和方法。數學教學過程,大體可分為知識發生和應用兩個階段。前者是揭示和建立新舊知識的內在聯系,使學生得到新知識的過程;后者是指在對已有的概念、定理、公式、法則和方法的鞏固和應用中進一步理解的過程。對于數學而言,知識的發生過程,實際上也就是思想方法的發生過程。因此,像概念的形成過程、結論的推導過程、方法的思考過程、問題的發現過程、規律的被揭示過程等等,都蘊含著向學生滲透數學思想方法、訓練思維的極好機會。對于學生來說,最常見的困難之源是:一項工作、一個發現、一個規律……沒有當初所用的形式出現,它們已經被濃縮了,隱去了曲折、復雜的思維過程,呈現出整理加工的嚴密、抽象、精煉的結論,而導致其誕生的那些思想方法卻往往隱為內在形式,成為數學結構系統的具有潛在價值的“內河流”。我們教學工作的一項重要任務,就是揭開數學這種嚴謹、抽象的面紗,將發現過程中的活生生的教學“返璞歸真”地交給學生,讓學生親自參與“知識再發現”的過程,經歷探索過程的磨礪,汲取更多的思維營養。
四、在知識形成中充分體驗數學思想
數學思想方法蘊含在數學知識之中,尤其蘊含于數學知識的形成過程中。在學習每一數學知識時,盡可能提煉出蘊含其中的數學思想方法,即在數學知識產生形成過程中,讓學生充分體驗。如我在教學“角”的知識時,先讓學生在媒體上觀察“巨大的激光器發送了兩束激光線”,然后由學生確定一點引出兩條射線畫角,感知角的“靜止性”定義以及角的大小與所畫邊的長短無關的觀念。再讓學生用“兩條紙片和圖釘”等工具進行“造角”活動,不經意之間學生發現角可以旋轉,并且隨著兩條紙片叉開的大小角又可以隨意地變化。這樣“角”便定義為“一條射線繞著它的端點旋轉而成的”,這就是角的“運動性”定義,體現著運動和變化的數學思想。學生在“畫角、造角”活動中經歷了“角”的產生、形成和發展,從中感悟的數學思想是充分與深刻的。
五、在復習運用中及時提煉數學思想
數學思想方法隨著學生對數學知識的深入理解表現出一定的遞進性。在課堂小結、單元復習和知識運用時,教師要引導學生自覺地檢查自己的思維活動,反思自己是怎樣發現和解決問題的,運用了哪些基本的思想方法等,及時對某種數學思想方法進行概括與提煉,使學生從數學思想方法的高度把握知識的本質,提升課堂教學的價值。如我在教學五年級“平面圖形的面積復習”時,讓學生寫出各種平面圖形(長方形、正方形、平行四邊形、三角形、梯形和菱形)的面積計算公式后提問:這些計算公式是如何推導出來的?每位同學選擇1~2種圖形,利用學具演示推導過程,然后在小組內交流。交流之后我又指出:你能將這些知識整理成知識網絡嗎?當學生形成知識網絡后,再次引導學生將這些平面圖形面積計算公式統一為梯形的面積計算公式。通過以上活動,深化了對“化歸”思想的理解,重組了學生已有的認知結構,拓展了數學思維,數學思想方法作為數學認知結構形成的核心起到了重要的組織作用。
現代數學思想方法的內涵極為豐富,小學數學教學中都有所涉及。我們廣大小學數學教師要做教學有心人,有意滲透,有意點撥,重視數學史的滲透,重視課堂教學小結,要以適應小學生年齡特點的大眾化、生活化方式呈現教學內容,讓學生通過現實活動,主動參與、自主探究,學會用數學思維方法提出問題、分析問題、解決問題,從而讓學生的數學思維能力得到切實、有效地發展,進而提高全民族的數學文化素養。