關麗紅, 李映紅
(長春大學 理學院, 長春 130022)

?x∈,
(1)

本文主要結果如下:
定理1設{Sk,k≥1}為一隨機序列, 滿足幾乎處處中心極限定理, 即
?x∈,
(2)

?x∈.
(3)
定理2設{Sk,k≥1}為一滿足式(2)的隨機序列, {Tk,k≥1}為一隨機序列, 滿足Tk→0 a.s. 則{Sk+Tk,k≥1}也滿足幾乎處處中心極限定理, 即
?x∈.
(4)


本文中C表示正常數, 不同之處可表示不同的值.
命題1設{Sk,k≥1}和{Tk,k≥1}為兩個隨機序列, 滿足{Tk>0}. 記
則對任意的x∈,和0<ε<1, 有
證明: 當x≥0時, 注意到0<ε<1則有
{Sk≤x(1-ε)}?{Sk≤xTk}∪{Tk≤1-ε},
從而
I{Sk≤x(1-ε)}≤I{Sk≤xTk}+I{|Tk-1|≥ε}.
(5)
易知對任意的s≥0,se-s2/2≤e-1/2, 從而
(6)
聯立式(5),(6)可得
當x<0時, 由于
{Sk≤x(1+ε)}?{Sk≤xTk}∪{Tk≥1+ε},
因此
I{Sk≤x(1+ε)}≤I{Sk≤xTk}+I{|Tk-1|≥ε}.
(7)
(8)
聯立式(7),(8)可得
于是由上述證明可知對任意的x∈, 有
類似上述證明, 由
可證對任意的x∈, 有
從而結論成立.
命題2設{Sk,k≥1}和{Tk,k≥1}為兩個隨機序列. 記
有人注意到,在5月28日前,范冰冰更博速度幾乎每天一條。6月2日范冰冰轉發她參與的公益項目動態后,就停止更新。就連她原定6月8日半夏晚會的行程,也以爽約告終。
則對任意的x∈,和η>0, 有
證明: 首先, 由
{Sk+Tk≤x}?{Sk≤x+η}∪{|Tk|>η},
有
其次, 由{Sk≤x-η}?{Sk+Tk≤x}∪{|Tk|>η}, 有
從而結論成立.
由命題1和ε的任意性可知定理1成立.
由命題2和η的任意性可知定理2成立.





注意到rn≤p, 從而Tn=o(1) a.s. 故由定理2可知,An滿足幾乎處處中心極限定理.

進一步, 如果Sn滿足幾乎處處中心極限定理, 則由定理2可知下列結論成立:
?x,
(9)
式(9)等價于
?x,
其中F1(·)為隨機變量eN的分布函數.
[1] Brosamler G A. An Almost Everywhere Central Limit Theorem [C]//Mathematical Proceedings Cambridge Philosophical Society. Cambridge: Cambridge University Press, 1988, 104(3): 561-574.
[2] Schatte P. On Strong Versions of the Central Limit Theorem [J]. Math Nachr, 1998, 137(1): 249-256.
[3] Peligrad M, SHAO Qiman. A Note on the Almost Sure Central Limit Theorem for Weakly Dependent Random Variables [J]. Statist Probab Lett, 1995, 22(2): 131-136.
[4] LI Yunxia, WANG Jianfeng. An Almost Sure Central Limit Theorem for Products of Sums under Association [J]. Statist Probab Lett, 2008, 78(4): 367-375.
[5] PENG Zuoxiang, TAN Zhongquan, Nadarajah S. Almost Sure Central Limit Theorem for the Products ofU-Statistics [J]. Metrika, 2011, 73(1): 61-76.
[6] ZHANG Yong, YANG Xiaoyun. An Almost Sure Central Limit Theorem for Self-normalized Weighted Sums [J]. Acta Math Appl Sin (Engl Ser), 2013, 29(1): 79-92.
[7] 酈園, 徐鋒.ρ--混合序列部分和乘積的幾乎處處中心極限定理的注記 [J]. 吉林大學學報(理學版), 2016, 54(4): 785-789. (LI Yuan, XU Feng. Note on Almost Sure Central Limit Theorem for Product of Partial Sums ofρ--Mixing Sequences [J]. Journal of Jilin University (Science Edition), 2016, 54(4): 785-789.)
[8] 趙珈玉, 高瑞梅. 截斷和乘積幾乎處處中心極限定理的注記 [J]. 吉林大學學報(理學版), 2016, 54(5): 1036-1038. (ZHAO Jiayu, GAO Ruimei. Note on the Almost Sure Central Limit Theorem for Product of Trimmed Sums [J]. Journal of Jilin University (Science Edition), 2016, 54(5): 1036-1038.)
[9] ZHANG Yong. A Universal Result in Almost Sure Central Limit Theorem for Products of Sums of Partial Sums under Mixing Sequence [J]. Stochastics, 2016, 88(6): 803-812.
[10] WU Qunying. Almost Sure Central Limit Theorem for Self-normalized Products of Partial Sums of Negatively Associated Sequences [J]. Comm Statist Theory Methods, 2017, 46(6): 2593-2606.
[11] Chandrasekharan K, Minakshisundaram S. Typical Means [M]. Oxford: Oxford University Press, 1952.
[12] 白志東. 與回歸系數LS估計相合性有關的幾個問題 [J]. 數學學報, 1984, 27(5): 704-710. (BAI Zhidong. Some Problems Relating to the Consistency of LS Estimates of Regression Coefficients in Linear Models [J]. Acta Math Sinica, 1984, 27(5): 704-710.)