符麗芬
【中圖分類號】G633.7 【文獻標識碼】A
【文章編號】2095-3089(2018)21-0062-01
力學部分的知識在中考物理中占到38%左右,學好力學部分的知識對學生而言起到至關重要的作用,力學主要出現在人教版八年級下冊中,其中有壓力、壓強、浮力、功、功率、機械效率等方面的計算,在學生學習的過程中,浮力部分的計算也算是一大難點,下面我就自己在教學中的做法談一點淺見。
一、夯實基礎是前提
浮力計算題它并不是單純涉及浮力方面的知識,它涉及到力學部分的許多知識點,如相互作用力的特點、平衡力的特點、壓力的大小、固體壓強的計算、液體壓強的計算等等,當然浮力的計算方法就有四種:第一種稱重法算浮力,即F浮=G-F;第二種壓力差法算浮力,即F浮=F下-F上;第三種阿基米德原理法算浮力,即F浮=G排=m排g;第四種平衡力法算浮力,即當物體漂浮或懸浮時F浮=G物。這些基本的知識點和基本公式,如果學生不能很好地理解和掌握,那么對于學生完成浮力的計算題而言就會存在很大的問題,所以夯實力學部分的基礎知識點和基本公式是掌握力學部分計算題的前提條件。
二、歸類方法是關鍵
浮力部分的計算題題型多、范圍廣、題量大,許多老師和學生都疲于應付,做得焦頭爛額,而且還覺得沒能真正掌握這部分的計算題,面對這些困惑,我個人覺得把這部分的計算題歸一下類是掌握這部分計算題的關鍵,下面略舉兩例我在這方面的做法。
1.受力分析法。
例:用一根能承受2t物體的拉力的鋼繩,能否把沉沒在水中體積為1m3,密度是2.6×103 kg/ m3的大石塊提起?如果能提起,當石塊提到露出水面多大體積時,繩子就要斷?(g取10/kg)
拿到這種題學生往往會一頭霧水,不知該如何下手,這時教師可指導學生用受力分析法來應對這類題目,即通過作圖指導學生分析大石塊在水中的受力情況,第一問中大石塊受到豎直向下的重力,豎直向上的水對它的浮力和鋼繩對它的拉力,問能不能把大石塊提起,就是要比較此時鋼繩對大石塊的拉力和鋼繩能承受的最大拉力之間的關系,若鋼繩對大石塊的拉力小于鋼繩能承受的最大拉力則能提起,反之則不能提起;第二問當石塊露出水面多大體積時,繩子就要斷?也可分析此時大石塊的受力情況并比較力的大小的變化情況,此時大石塊仍受重力作用且和第一問中的重力相比不變,仍受豎直向上的浮力和拉力作用,但和第一問中的浮力相比變小了,繩子要斷即鋼繩對大石塊的拉力達到最大,則此時F浮+F拉=G物,則F浮=G物-F拉,用受力分析法求出此時水對大石塊的浮力,利用阿基米德原理的變形公式求出大石塊排開水的體積,就可以求出大石塊露出水面的體積。這樣就解決了這一類問題。
2.學會看圖像,從圖像中找條件法。
近幾年的期末檢測題或中考物理測試題中,條件以坐標圖像或以表格形式呈現的題越來越多,逐漸成為一種趨勢,所以教會學生看圖像、分析圖像找條件顯得越來越重要。
例:用一彈簧測力計掛著一實心圓柱體,圓柱體的底面積剛好與水面接觸(未浸入水),如圖甲所示,然后將其逐漸浸入水中,圖乙是測力計示數隨圓柱體逐漸浸入水中深度變化情況,(g取10N/kg)求:(1)圓柱體受的最大浮力;(2)圓柱體剛浸沒時下表面受到的液體壓強;(3)圓柱體的密度。
解決這類計算題關鍵是教會學生看圖像,從圖像中獲取信息,從圖像中不難看出,當圓柱體浸入水中為h=0時測力計的示數為2.0N,即圓柱體的重力為2.0N,然后抓住當物體浸沒時測力計示數不變這一規律,結合圖像,當圓柱體剛浸沒時h=12cm時,測力計示數為1.4N,只要從圖像中解讀出這兩個關鍵條件,則題目中的所有問題即可迎刃而解。第(1)問中圓柱體受到的最大浮力,即浸沒時所受浮力,用稱重法算浮力可求出即F浮=G-F;第(2)圓柱體剛浸沒時下表面受到的液體壓強,剛浸沒時h=12cm,知道這個條件帶公式進去就能算出;第(3)圓柱體的密度已經從圖像中知道重力G和圓柱體浸沒水中時測力計的示數F,應用之前老師講過的二次稱重算固體密度就可以求出這一問。
當然,浮力計算題的解決方法還有很多,所謂“仁者見仁,智者見智”,這里略舉兩例,只有教師在教學中善于總結、歸納,學生學習起來才可以收到事半功倍的效果。
三、變通思維是法寶
新課程要求教師樹立創新、變通意識,形成教學個性,對于學生也如此,要真正掌握浮力部分的計算題,變通思維是法寶,比如題目要求計算露出水面的體積,你可以先算出浮力,再通過阿基米德原理變形公式求出V排,V排即V浸,則V露=V物-V浸;但如果再另一題目中告訴我們V露,要將我們計算V物,那么用上面的方法算出V排后,用V物=V露+V浸即可求出,在浮力部分這樣變通思維的地方不勝枚舉,這就要求教師在引導學生時注意學會用變通的思維方式,所謂“授之以魚,不如授之以漁”,久而久之學生也學會變通思維,舉一反三,觸類旁通,這樣學生遇到浮力的計算題時方能從容不迫、游刃有余。