金秀佳
所謂“偷懶”就是“走捷徑”,那就是:學生在數學學習過程中,選擇最簡單、最省力、最快捷的方法,以達到同樣結果。這種“走捷徑”正符合我們課標所倡導的基本理念:數學教學活動要養成學生獨立思考的習慣,學會思考的方法。因此,從某種意義上來說會“走捷徑”的人其實是一個善于思考、思維敏捷的人。“走捷徑”乃是數學學習之最高境界。所以在數學學習中要倡導“走捷徑”,努力培養學生“走捷徑”的能力。
一、有意識地引導學生“走捷徑”
三年級“口算乘法”中有這樣一個例題:人騎自行車,1小時約6千米,特快列車1小時行160千米。呈現要探究的問題:人騎自行車3小時可以行多少千米?特快列車3小時可以走多少千米?
得出16×3這個算式后,引導學生想想、說說16×3=?你是怎樣想的?學生有的說:10×3=30,6×3=18,30+18=48。而在教學160×3時,算法就更多了:
生1:100×3=300,60×3=180,300+180=480。
生2:16×3=48,16個十×3=48個十=480。
生3:我們已知道16×3=48,48后面添上一個0,就是480。
如何對計算方法進行優化,形成較為高效的方法呢?教師引導學生對以上不同的計算方法進行分析、比較、評價,然后結合具體的情景告訴學生,因為已經知道16×3=48,就不要再像剛才那樣逐步地思考,在計算160×3的時候就可以直接在48后面添0。這樣方法簡單,計算也快。這種行為是“走捷徑”的行為,但也是肯動腦筋的表現。教師的肯定有意識地引導了學生“走捷徑”的行為,也大大激發了他們學習數學的興趣,同時也在比較、交流、評價的過程中促進了學困生的發展,同時讓優秀的學生享受到成功的快感,增強學習的自信心。
二、引導學生探究“走捷徑”的方法
在有意識地引導學生這種所謂的“走捷徑”行為以后,關鍵還要鼓勵學生探究“走捷徑”的方法。
教學三年級“周長計算”時,我設計了一個比較不同圖形周長長短的問題(如圖1)。
常規做法是,逐一測量出每個多邊形各邊的長度,再把測量結果相加,根據相加的結果判斷哪一個圖形的周長最長,哪一個周長最短。這是一個非常繁雜的過程,學生開始獨立思考并操作了。看樣子,一時半會沒有人會給我明確的答案。在學生獨立思考、操作一定時間后,我啟發道:“看似復雜的數學題,往往方法極為簡單,大家再仔細看看這四個平面圖形,是不是有什么辦法可以‘走捷徑呢?”頓時,教室里響起了“嗡嗡嗡”的議論聲,但似乎也并沒有什么結果。這時大屏幕上呈現了兩種顏色。學生先是一愣,繼而馬上有學生回答:“老師,我知道了,紅色的邊是每個圖形都有的,只要量一量每個圖形中黑邊的長度,就可以比較圖形周長的長短了。”“對呀,我怎么沒有想到呢”“哇,比剛才簡單多了”在這一教學過程中,學生既獨立思考,又互相交流,在不斷地體驗與感悟的過程中低層次思維逐步自然地向高層次思維轉化。在“走捷徑”的過程中學會了數學方法。
三、強化學生的“走捷徑”行為
學生有了初步的“走捷徑”意識,掌握了一定走捷徑方法之后,在平常的學習中肯定會無意、有意地表現出“走捷徑”的行為,這時教師就要抓住時機馬上加以肯定,給予表揚,讓學生享受到成功的快樂。
如,三年級有這樣一道題:先量一量,再算出下面圖形的周長。
學生在完成此題時,往往出現三種情況:A.每邊都測量;B.①②③每幅只量二條邊,④每邊都測量;C.每幅只測量二條邊。教師采取的策略:第一步請學生匯報每一個平面圖形的周長是多少,并向全班學生介紹你是如何完成任務的;第二步引導學生分析、比較,在爭辯中對所采用的策略進行優化;第三步極力肯定、表揚C組學生的這種“走捷徑”行為,能綜合、靈活地運用所學知識,巧妙地把“”通過線段平移變成學過的“”,再求出周長。
這是一道能根據學生個性和不同思維層次呈現多種解題策略的題目。教師抓住題目特性有意識地引導學生獨立思考,提出自己的想法,再交流、評價、體驗,最后極力肯定、表揚C組學生這種解題方法。在這樣的過程中,教師巧妙地強化了學生“走捷徑”的行為,培養了走捷徑的能力。
另外,教師還可以通過有意識地創設“走捷徑”的情景來培養學生“走捷徑”的能力。如下面的圖形你認為只需要測量哪幾條邊的長度,就可以求出它的周長?在這種意向性非常明確的情景中,學生可以直奔主題,集中精力思考:只需要測量哪幾條邊的長度,就可以求出它的周長。在獨立思考的基礎上,引導學生討論、交流,得出最簡單的方法:只要測量其中三條邊(如圖2)就可以根據長方形的周長,用計算公式:(a+b)×2+c求出圖形的周長。這個思考、討論、交流的過程是學生極度興奮、注意力高度集中的過程,學生的學習方法在思維火花的不斷碰撞中生成,問題解決的策略在生成中得到提高。
總之,適時、恰當地“走捷徑”是一種能力的顯示,有利于學生潛能、個性、創造性和能力的持續發展,但是在數學學習過程中的這種“走捷徑”和勤奮是不矛盾的,有的放矢地“走捷徑”正是勤奮的結晶。
編輯 高 瓊