梁美青
數學是一門抽象學科,它來源于生活實踐又高于生活實踐,是在生活實踐的基礎上提升到抽象的數學表達?!稊祵W課程標準》強調:要讓學生切身經歷把實際的數學問題抽象成數學圖形,并進行解釋與應用的過程。教育家杰羅姆·布魯納認為:“在人類智慧成長期,有3種表征系統在起作用,即動作表征、表象表征和符號表征?!蔽覀兊慕虒W實踐也反映出兒童認知結構具有從具體到抽象趨勢的特征,學生的知識的形成過程就是在連續不斷的使用這些表征,根據兒童的這個認知特點,在課堂上我充分利用這些表征方式的互換、轉化,利用多種教學手段滲透數學模型,有效地引導學生知識的形成。
一、注重直觀、操作,形成正確表象表征
我們都知道,兒童思維的發展正處于形象思維向抽象思維過渡的階段,對于抽象的數學問題,老師若僅用抽象的語言去講解,學生只能是一知半解,無法完全理解。因此,筆者在教學中合理采用教具、學具等直觀教學器具,配合學生的動手操作活動,讓學生經歷視覺和觸覺的感受,有利于學生形成正確的表象。例如,在教學二年級結合平均分中等分的情況教學除法的含義的課堂中,筆者充分調動學生已有的“平均分”的知識基礎和活動經驗,在出示例4(把12個竹筍平均放在4個盤里)的情境后,根據小精靈的提示“平均放在4個盤里,每盤放幾個”,讓學生拿出12個圓片代表例題中的竹筍平均分到4個盤子里,進行平均分的操作,激活已有的平均分的活動經驗,學生通過分一分、擺一擺,“感知——表象——概念”,直觀地將抽象的概念形象化,為除法的含義構建形成正確的表象。
二、注重語言表述,滲透數學模型思想
語言是思維的外殼,學生的數學思維是通過語言表現出來。在表內除法(一)單元教材說明和教學建議中強調:注重用數學語言描述平均分,實現“多元表征”的統一。布魯納的多元表征理論表明,對數學概念的理解有多種方式,要多種方式之間起聯系,才能深化對概念的理解。因此在教學中,筆者注重讓學生用數學語言描述“平均分”,在前面例4教學中讓學生先動手分一分、擺一擺學具,建立正確表象,為動作表征和語言表征的轉化作鋪墊,然后讓學生同桌間再邊擺邊說平均分的過程,接著請一名學生到黑板前展示平均分學具并用語言描述自己的操作過程,最后讓學生小組交流自己的操作過程。學生通過動作和語言的結合,開始一步一步構建除法的含義,這是學生動作表征和語言表征之間的轉化、互換,不斷加深學生對平均分活動的理解和表象的建立,進而為形成除法的完整概念打下基礎,同時為用語言表述除法算式的含義、運用除法意義解決問題、說明算理等滲透模型思想。
三、注重探究實踐,經歷符號表征的再創造
《新課標》指出:“在數學課程中,應注重發展學生的模型思想?!睌祵W模型實際上是一種數學思維方法,讓學生從現實生活或具體情境中抽象出數學問題,發現解題規律并歸納形成新的數學方法。符號表征是學生數學知識模型思想形成和構建的高級形式。在課堂上,筆者注重引導學生探究實踐,引導他們經歷符號表征的再創造過程,以建立模型思想。例4除法含義的教學中,前兩個環節是學生已有的知識,因此如何用除法算式表示平均分(即符號表征)是本節課的重點。筆者對學生提出挑戰性的問題:“誰能用一個算式將‘把12個竹筍平均放在4個盤里,每盤放3個’這事件表示出來?”讓學生思考并嘗試寫出算式,然后組織學生說出自己所寫算式所表示的含義。當時有學生說出“4×3=12”,筆者立刻讓學生討論這到算式所表示的含義,最后學生共同認為這道算式不能表示例4中“平均分”這一事件,引發認知沖突,激發學生尋求新的“表示方法”的需求,接著引導學生自學如何用除法表示平均分,表述出除法算式的含義,弄懂算式中各數在平均分中的對應關系;最后筆者讓學生思考、討論:還有什么事也能用 =3表示呢?讓學生體會除法是一類問題的概括化表示,滲透形成除法的模型思想。
數學課堂中這些多元表征是相互轉化、相互作用不可分割的,因此我們要注重運用多元表征的特征,讓學生經歷動作表征、語言表征和符號表征的相互結合和轉化,讓學生思維經歷從具體到抽象,再從抽象回到具體的過程,有效引導學生知識的形成。