何毛偉 段艷廷 張亞偉 徐立斌 陳欽潤 陳建梅
【摘要】 神經損傷在臨床上很常見,外科技術的發展已經在很大程度上提高了修復的質量,但修復的效果仍然不理想。嗅鞘膠質細胞是極少數的中樞神經系統可以再生的細胞之一,具有很強的促進神經修復再生和神經髓鞘化的能力,它的發現為神經系統再生醫學領域帶來了新的希望。然而,炎癥應激下,嗅鞘膠質細胞的活性降低或發生死亡,明確嗅鞘膠質細胞在炎癥條件下細胞死亡的具體病理分子過程非常重要。本文對近年來的最新研究進展進行綜述,并且對存在的問題提出討論和假設。
【關鍵詞】 嗅鞘膠質細胞; 炎癥應激; 神經損傷; 修復; 病理機制
doi:10.14033/j.cnki.cfmr.2019.19.082 文獻標識碼 A 文章編號 1674-6805(2019)19-0-04
Advances in Research on Stress Dysfunction of Olfactory Ensheathing Glia Induced by Inflammation/HE Maowei,DUAN Yanting,ZHANG Yawei,et al.//Chinese and Foreign Medical Research,2019,17(19):-185
【Abstract】 Nerve damage is very common in the clinic.The development of surgical techniques has greatly improved the quality of repair,but the effect of repair is still not ideal.Olfactory ensheath glial cells are one of the few cells that can be regenerated by the central nervous system.They have strong ability to promote nerve repair regeneration and neuro myelination.Its findings have brought new hope to the field of neurological regenerative medicine.However,under inflammatory stress,the activity of olfactory ensheathing glial cells is reduced or killed,and it is important to understand the specific pathological molecular processes of olfactory ensheathing glial cells under inflammatory conditions.This paper reviews the latest research progress in recent years and discusses and hypotheses the existing problems.
【Key words】 Olfactory ensheathing glial cells; Inflammatory stress; Nerve injury; Repair; Pathological mechanism
First-authors address:Bengbu Medical College,Affiliated Fuzhou General Hospital,Fuzhou 350025,China.
嗅鞘神經膠質細胞(olfactory ensheathing glia,OEG)是一種巨膠質胞亞型,位于神經系統中。嗅鞘膠質細胞的發育起源于鞘內神經膠質,分布在嗅上皮內,嗅覺神經和嗅球的前兩層,這些細胞在形態學,免疫細胞化學和功能特性與其他神經膠質細胞不同,OEG在一生中均會產生神經營養因子和介導神經元的因子保持神經活性和軸突的延伸。此外,他們能夠遷移至受損傷的神經處,修復再生神經。OEG的主要作用是分泌大量神經生長因子促進神經生長[1]。嗅鞘細胞是目前所發現的極少數的中樞神經系統可以再生細胞之一。因此,OEG可能在未來被用作治療中樞神經系統(CNS)創傷的治療細胞之一。OEG最明顯的特點是具有終身再生能力,并且能夠釋放多種神經營養因子、神經保護分子,是促進神經髓鞘化最強的細胞。OEG的再生特性是它創造了一個微環境有利于軸突生長和恢復,例如吞噬細胞碎片和/或細菌、調節神經炎癥、提供神經保護、促進血管生成、表達神經營養因子,以及分泌細胞外基質(ECM)分子,提供基質對于新生成的軸突非常重要。神經營養因子促進神經元的生長和存活,OEG表達神經生長因子(NGF)、腦源性神經營養因子(BDNF)、神經營養因子3(NT-3)、神經營養因子4/5(NT-4/5)、神經調節蛋白(NRG)、睫狀神經營養因子(CNTF),神經營養因子(NTN)和膠質細胞衍生生長因子(GDNF),其表達可歸因于炎癥和損傷。近年來逐漸應用于治療周圍神經損傷、脊髓損傷。嗅鞘細胞與神經膠質細胞、許旺細胞在表現型上有共同點,它們都能夠促進軸突的再生,主要區別在于嗅鞘細胞不但存在于中樞神經系統,也存在于外周神經中。嗅黏膜中的神經元是唯一生后才生長并在成年時繼續分化的神經元,壽命為4~12周,隨著新細胞的生長,又建立了新的神經支配關系。嗅鞘細胞存在于嗅神經及嗅球的神經層上,沿著嗅神經的全長,從周圍神經系統到中樞神經分布。通過將培養的OEG移植到受損傷的神經系統中,OEG參與了終身神經再生。例如,OEG移植可以減輕脊髓損傷[2],脊髓損傷的動物研究表明,OEG可以存活和生存,并且遠距離移植到損傷部位,減少瘢痕組織和空腔形成,恢復呼吸和攀爬功能并改善后肢活動度。OEG進入瘢痕組織的遷移特性歸因于它們的快速移動,減輕周圍神經損傷,減輕局灶性腦缺血[3-4]。嗅鞘神經膠質細胞(OEG)在神經系統再生醫學領域有著廣泛的應用。
1 炎癥條件OEG的應激及線粒體對細胞凋亡的影響
1.1 OEG修復作用
在分子水平上,OEG表達多種胞外基質蛋白,包括但不限于層粘連蛋白、纖連蛋白、神經/膠質抗原2(NG2)和galectin-1。這些細胞外基質蛋白在神經發生和再生扮演關鍵角色[5-7]。此外,重傷之后,如嗅球切除,OEG增殖和遷移到受損的組織器官修復然后產生保護性細胞因子[8-9]。此外,OEG激活免疫反應[10],減輕氧化應激[11],提高神經元碎片化的間隙[12],并促進神經元存活[13]。這一信息強調了基于OEG的再生醫學正在成為治療外周/中樞神經系統損傷的一種很有前途的方法[14]。
1.2 炎癥對OEG的影響
然而,由于慢性炎癥反應,OEG存活率隨著年齡的增長而降低,這在帕金森病和其他神經退行性疾病中尤為明顯[15]。其病理學機制是由于慢性炎癥反應導致的OEG的生存能力隨著年齡的增長而逐漸下降。因此,了解炎癥應激誘導OEG功能障礙的分子機制可能為基于OEG的再生醫學急需的新的治療方式鋪平道路。
1.3 炎癥誘導神經損傷的作用機制
越來越多的證據表明慢性炎癥在帕金森病中發生的進行性多巴胺能神經變性中起作用[16]。炎癥通過氧化應激和線粒體功能障礙的惡性循環的惡化來介導神經元損傷。細菌內毒素,脂多糖(LPS),誘導小膠質細胞激活和炎癥驅動的多巴胺能神經變性。為了檢驗LPS誘導的炎癥反應可能損害線粒體結構和功能導致黑質多巴胺能神經元丟失,將LPS或鹽水注射到大鼠的紋狀體中。發現紋狀體內LPS誘導線粒體呼吸缺陷,線粒體嵴損傷,線粒體氧化,黑質中的多巴胺能神經元顯著減少。該研究表明LPS誘導的多巴胺能神經變性可能通過線粒體損傷發揮作用。
值得注意的是,以往的研究都使用脂多糖(lipopolysaccharide,
LPS)誘導神經炎癥模型并觀察神經損傷。例如,LPS被用來探討慢性炎癥是否與帕金森疾病中漸進性多巴胺能神經變性有關[17]。LPS介導的神經毒性與腦多巴胺能神經功能障礙有密切關聯。LPS給藥已被用于誘導神經變性如阿爾茨海默病的體內模型[18]。因此采用LPS誘導炎癥反應模型觀察OGE細胞凋亡的損傷機制是一種趨勢。
1.4 線粒體在細胞死亡中的作用
線粒體是人體所有細胞中存在的細胞器(紅細胞除外),在其中發揮著關鍵作用。線粒體除了提供能量,線粒體還參與其他復雜過程,如細胞代謝,活性氧的產生,鈣調節,細胞增殖,細胞分裂和程序性細胞死亡(細胞凋亡)等。一些研究表明炎癥誘導內皮細胞凋亡通過激活含半胱氨酸的天冬氨酸水解酶9
(caspase9)依賴的線粒體凋亡途徑。此外,最近的研究發現線粒體動力學(裂變和融合)維持著線粒體穩態。過度線粒體裂變是線粒體細胞凋亡的早期階段。過多的線粒體裂變促進了促凋亡蛋白的滲漏[如細胞色素c(cyt-c)]進入細胞質引發線粒體相關的細胞凋亡。這些數據表明,線粒體分裂是內皮細胞存活和靜脈內穩態的潛在靶點。一些研究表明線粒體裂變與細胞鈣濃度密切相關,因為裂變是一種自收縮過程。
細胞活力和功能是由線粒體高度調控的,線粒體對內環境穩態失衡,尤其是炎癥損傷,會表現出多種應激反應,包括氧化應激反應、炎癥反應和神經系統的缺血反應[19-20]。線粒體影響細胞生存和死亡的一般機制有三:(1)ATP耗盡[21];(2)介導細胞氧化應激[22];(3)釋放促凋亡因子,啟動含半胱氨酸的天冬氨酸水解酶(cysteinyl laspartate specific proteinase,Caspase)依賴的死亡途徑[23-24]。例如,線粒體誘發的氧化應激,促進了炎癥損傷中的內皮細胞凋亡[25]。線粒體異常分裂,通過加速肝細胞死亡,參與脂肪肝疾病的發展和進展[21-26]。在分子水平上,線粒體裂變是由線粒體裂變蛋白(Drp1)從細胞質轉位到線粒體表面上與線粒體結合,Drp1將在線粒體周圍形成“環”結構,并在GTP的幫助下迫使線粒體分裂成幾個子線粒體。值得注意的是,Drp1與線粒體的相互作用被線粒體裂變因子(Mff)微調Drp1的線粒體外膜受體。糖尿病腎病的發病機制也與線粒體過度分裂有關[27]。在炎癥相關的神經退行性疾病中,線粒體分裂被激活并導致線粒體氧化應激。此外,IL-1β介導的神經退化,本質上是由于線粒體氧化應激和線粒體去極化所引起的[28]。此外,炎癥誘導的抑郁樣行為也與線粒體異常有關[29]。這些數都據強調了線粒體在維持神經元活力方面的關鍵作用。但目前還沒有研究探討炎癥損傷中OEG線粒體穩態的改變。
1.5 線粒體介導細胞死亡的機制研究
此外,線粒體介導的細胞損傷或死亡主要依賴于線粒體外膜的高滲透性[30]。線粒體膜滲透促進線粒體促凋亡因子[包括cyt-c、細胞凋亡調節蛋白(Smac)和細胞凋亡調節蛋白(HtrA2/Omi)]從線粒體釋放到細胞質或細胞核中,這些促凋亡因子,最終激活caspase-9參與的線粒體死亡通路[31]。值得注意的是,線粒體外膜的通透性主要由Bcl-2相關X蛋白(Bcl-2 associated X protein)及其激活因子Bnip3(Bcl-2/adenovirus E1B 19KD- interacting protein3)控制。Bax的增加和Bcl-2的減少,通通促進了線粒體外膜的高滲透性,而過于通透的線粒體外膜,可能進一步誘導線粒體滲透性過渡孔(mPTP)的打開。mPTP開放時間和開放程度的增加,也輔助性的激活了線粒體依賴的死亡信號通路[32]。因此,Bax激活和線粒體促凋亡因子泄漏(尤其是HtrA2/Omi)被認為是線粒體相關細胞死亡的兩個關鍵上游分子事件。在創傷性腦損傷中,Bnip3激活被認為是神經元凋亡的發病機制[33]。同樣,在錳誘導的神經毒性和缺血性中風中,Bnip3上調會加重線粒體功能障礙[34]和神經元死亡[35]。但需要注意的是,炎癥是否通過Bax依賴性線粒體凋亡介導OEG損傷尚不完全清楚。以往的研究均使用LPS誘導神經炎癥[36],發現LPS可導致軸突[37]、小膠質細胞[38]和螺旋神經節神經元[39]線粒體損傷。
2 炎癥誘導OEG損傷的可能機制
目前的研究尚不能明確炎癥導致OEG損傷的具體病理機制,但是明確這些病理分子過程會為OEG抵抗慢性炎癥應激提供一個潛在的治療靶點,為神經損傷的修復提供新的思路。基于這些報道,筆者提出并分析了以下3個假設:(1)Lps誘導的炎癥是否引起OEG細胞凋亡;(2)Lps介導的OEG死亡是否需要線粒體功能障礙;(3)LPS是否通過JNK-Bnip3-Bax信號通路調節OEG活力和線粒體穩態。
參考文獻
[1] Ramón-Cueto A,Avila J.Olfactory ensheathing glia:properties and function[J].Brain Research Bulletin,1998,46(3):175-187.
[2] Yao R,Murtaza M,Velasquez J T,et al.Olfactory Ensheathing Cells for Spinal Cord Injury:Sniffing Out the Issues[J].Cell Transplantation,2018,27(6):879-889.
[3] Matthew B,James J,Mary C,et al.The Glia Response after Peripheral Nerve Injury:A Comparison between Schwann Cells and Olfactory Ensheathing Cells and Their Uses for Neural Regenerative Therapies[J].International Journal of Molecular Sciences,2017,18(2):287.
[4] Augestad I L,Nyman A K G,Costa A I,et al.Effects of Neural Stem Cell and Olfactory Ensheathing Cell Co-transplants on Tissue Remodelling After Transient Focal Cerebral Ischemia in the Adult Rat[J].Neurochemical Research,2017,42(6):1599-1609.
[5] ONeill P,Lindsay S L,Pantiru A,et al.Sulfatase-Mediated Manipulation of the Astrocyte-Schwann Cell Interface[J].Glia,2016,65(1):19-33.
[6] Cao L,Mu L,Qiu Y,et al.Diffusible,membrane-bound,and extracellular matrix factors from olfactory ensheathing cells have different effects on the self-renewing and differentiating properties of neural stem cells[J].Brain Research,2010,1359:56-66.
[7] Tan A M,Zhang W,Levine J M.NG2:a component of the glial scar that inhibits axon growth[J].Journal of Anatomy,2005,207(6):717-725.
[8] Chehrehasa F,Ekberg J A K,St John J A.A novel method using intranasal delivery of EdU demonstrates that accessory olfactory ensheathing cells respond to injury by proliferation[J].Neuroscience Letters,2014,563:90-95.
[9] Nan B,Getchell M L,Partin J V,et al.Leukemia inhibitory factor,interleukin-6,and their receptors are expressed transiently in the olfactory mucosa after target ablation[J].Journal of Comparative Neurology,2001,435(1):60-77.
[10] Lane A P,Turner J,May L,et al.A Genetic Model of Chronic Rhinosinusitis-Associated Olfactory Inflammation Reveals Reversible Functional Impairment and Dramatic Neuroepithelial Reorganization[J].Journal of Neuroscience,2010,30(6):2324-2329.
[11] Jinbo L,Zhiyuan L,Zhijian Z,et al.Olfactory Ensheathing Cell-Conditioned Medium Protects Astrocytes Exposed to Hydrogen Peroxide Stress[J].Cellular & Molecular Neurobiology,2013,33(5):699-705.
[12] Li Y,Zou T,Xue L,et al.TGF-β1 enhances phagocytic removal of neuron debris and neuronal survival by olfactory ensheathing cells,via,integrin/MFG-E8 signaling pathway[J].Molecular and Cellular Neuroscience,2017,85:45-56.
[13] Wright A A,Todorovic M,Tello-Velasquez J,et al.Enhancing the Therapeutic Potential of Olfactory Ensheathing Cells in Spinal Cord Repair Using Neurotrophins[J].Cell Transplantation,2018,27(6):867-878.
[14] Liu Q,Qin Q,Sun H,et al.Neuroprotective effect of olfactory ensheathing cells co-transfected with Nurr1 and Ngn2 in both in vitro and in vivo models of Parkinsons disease[J].Life Sciences,2018,194:168-176.
[15] Lei Q,Tan J,Yi S,et al.Mitochonic acid 5 activates the MAPK-ERK-yap signaling pathways to protect mouse microglial BV-2 cells against TNFα-induced apoptosis via increased Bnip3-related mitophagy[J].Cellular & Molecular Biology Letters,2018,23(1):14.
[16] Hunter R,Ojha U,Bhurtel S,et al.Lipopolysaccharide-induced functional and structural injury of the mitochondria in the nigrostriatal pathway[J].Neuroscience Research,2017,114:62-69.
[17] Kaizaki A,Tien L T,Pang Y,et al.Celecoxib reduces brain dopaminergic neuronaldysfunction,and improves sensorimotor behavioral performance in neonatal rats exposed to systemic lipopolysaccharide[J].Journal of Neuroinflammation,2013,10(1):1-14.
[18] Noh H,Jeon J,Seo H.Systemic injection of LPS induces region-specific neuroinflammation and mitochondrial dysfunction in normal mouse brain[J].Neurochemistry International,2014,69:35-40.
[19] Santuy A,Turégano-López M,Rodríguez J R,et al.A Quantitative Study on the Distribution of Mitochondria in the Neuropil of the Juvenile Rat Somatosensory Cortex[J].Cerebral Cortex,2018,28(10):3673-3684.
[20] Jung-Hwa T C.Stimulation-induced structural changes at the nucleus,endoplasmic reticulum and mitochondria of hippocampal neurons[J].Molecular Brain,2018,11(1):44.
[21] Ruibing L,Ting X,Dandan L,et al.Therapeutic effect of Sirtuin 3 on ameliorating nonalcoholic fatty liver disease:The role of the ERK-CREB pathway and Bnip3-mediated mitophagy[J].Redox Biology,2018,18:229-243.
[22] Zhou H,Wang S,Hu S,et al.ER–Mitochondria Microdomains in Cardiac Ischemia-Reperfusion Injury:A Fresh Perspective[J].Frontiers in Physiology,2018,9:755.
[23] Hao Z,Jin W,Pingjun Z,et al.NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α[J].Basic Research in Cardiology,2018,113(4):23.
[24] Zhu P,Hu S,Jin Q,et al.Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury:A mechanism involving calcium overload/XO/ROS/mPTP pathway[J].Redox Biology,2018,16:157-168.
[25] Cui J,Li Z,Zhuang S,et al.Melatonin alleviates inflammation-induced apoptosis in human umbilical vein endothelial cells via suppression of Ca2+-XO-ROS-Drp1-mitochondrial fission axis by activation of AMPK/SERCA2a pathway[J].Cell Stress Chaperones,2018,23(2):281-293.
[26] Zhou H,Du W,Li Y,et al.Effects of melatonin on fatty liver disease:the role of NR4A1/DNA-PKcs/p53 pathway,mitochondrial fission and mitophagy[J].Journal of Pineal Research,2017,64(1):229-243.
[27] Junqin Sheng,Hongyan Li,Qin Dai,et al.DUSP1 recuses diabetic nephropathy via repressing JNK-Mff-mitochondrial fission pathways[J].Journal of Cellular Physiology,2019,234(3):3043-3057.
[28] Mcfarland A J,Davey A K,Mcdermott C M,et al.Differences in statin associated neuroprotection corresponds with either decreased production of IL-1β or TNF-α in an in vitro model of neuroinflammation-induced neurodegeneration[J].Toxicology & Applied Pharmacology,2018,344:56-73.
[29] Chen W J,Du J K,Hu X,et al.Protective effects of resveratrol on mitochondrial function in the hippocampus improves inflammation-induced depressive-like behavior[J].Physiology & Behavior,2017,182:54-61.
[30] Zhou H,Zhang Y,Hu S,et al.Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis[J].Journal of Pineal Research,2017,63:e12413.
[31] Li H,He F,Zhao X,et al.YAP Inhibits the Apoptosis and Migration of Human Rectal Cancer Cells via Suppression of JNK-Drp1-Mitochondrial Fission-HtrA2/Omi Pathways[J].Cellular Physiology and Biochemistry:International Journal of Experimental Cellular Physiology,Biochemistry,and Pharmacology,2017,44(5):2073-2089.
[32] Jing X,Yang J,Jiang L,et al.MicroRNA-29b Regulates the Mitochondria-Dependent Apoptotic Pathway by Targeting Bax in Doxorubicin Cardiotoxicity[J].Cellular Physiology and Biochemistry:International Journal of Experimental Cellular Physiology,Biochemistry,and Pharmacology,2018,48(2):692-704.
[33] Cho B B.Caspase-independent programmed cell death following ischemic stroke[J].Journal of Investigative Surgery:the Official Journal of the Academy of Surgical Research,2008,21(3):141-147.
[34] Prabhakaran K,Chapman G D.BNIP3 up-regulation and mitochondrial dysfunction in manganese-induced neurotoxicity[J].Neurotoxicology,2009,30(3):414-422.
[35] Zhao S T,Chen M,Li S J,et al.Mitochondrial BNIP3 upregulation precedes endonuclease G translocation in hippocampal neuronal death following oxygen-glucose deprivation[J].BMC Neuroscience,2009,10(1):113.
[36] Rigillo G,Vilella A,Benatti C,et al.LPS-induced histone H3 phospho(Ser10)-acetylation(Lys14) regulates neuronal and microglial neuroinflammatory response[J].Brain,Behavior,and Immunity,2018,74:277-290.
[37] Errea O,Moreno B,Gonzalez-Franquesa,et al.The disruption of mitochondrial axonal transport is an early event in neuroinflammation[J].Journal of Neuroinflammation,2015,12(1):152.
[38] Ho D H,Je A R,Lee H,et al.LRRK2 Kinase Activity Induces Mitochondrial Fission in Microglia via Drp1 and Modulates Neuroinflammation[J].Experimental Neurobiology,2018,27(3):171-180.
[39] Zuo W Q,Hu Y J,Yang Y,et al.Sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation will increase in lipopolysaccharide-induced inflammation in vitro model[J].Journal of Neuroinflammation,2015,12(1):105.
(收稿日期:2019-05-05) (本文編輯:郎序瑩)