李建偉 張麗娜 張英民 康少英 魏萌
[摘要] 目的 研究滑膜組織miR-203基因啟動子區異常甲基化狀態與肥胖膝關節骨性關節炎(KOA)關節液促炎因子水平相關性。 方法 KOA患者滑膜組織及關節液取自2018年1月~2019年1月于河北省邯鄲市中心醫院行膝關節人工關節置換的36例患者,體重指數(BMI)≥28.0 kg/m2的患者納入肥胖組(23例),18.0 kg/m2≤BMI≤23.9 kg/m2的患者納入正常對照組(13例)。甲基化特異性PCR(MSP)檢測滑膜組織miR-203的基因啟動子區甲基化狀態。通過定量聚合酶鏈反應(qPCR)檢測miR-203在滑膜組織的表達水平;應用qPCR檢測miR-203在肥胖組和正常對照組中的表達水平;采用Pearson相關分析探討miR-203與BMI,關節液中腫瘤壞死因子-α(TNF-α)、白細胞介素-1β(IL-1β)、白細胞介素-6(IL-6)的相關性。 結果 肥胖組滑膜組織中miR-203基因啟動子區呈異常低甲基化狀態,正常對照組則呈部分低甲基化狀態。與正常對照組比較,肥胖組滑膜組織中miR-203的表達水平升高,差異有統計學意義(P < 0.05)。肥胖組關節液中IL-1β、IL-6、TNFα的相對表達均高于正常對照組,差異均有統計學意義(均P < 0.05)。miR-203基因啟動子區甲基化水平與人群BMI和關節液中IL-1β、IL-6、TNF-α均呈負相關(均P < 0.05);miR-203表達水平和與人群BMI和關節液中IL-1β、IL-6、TNF-α均呈正相關(均P < 0.05)。 結論 KOA患者滑膜組織miR-203基因啟動子區低甲基化與肥胖KOA患者BMI及關節液促炎因子水平密切相關,miR-203可作為肥胖KOA炎癥的重要調控因素及KOA治療的潛在靶標。
[關鍵詞] 肥胖;膝關節骨性關節炎;微小RNA; miR-203;甲基化
[中圖分類號] R684.3 ? ? ? ? ?[文獻標識碼] A ? ? ? ? ?[文章編號] 1673-7210(2020)04(c)-0032-05
Study on the correlation between the methylation of miR-203 gene promoter region and the level of synovitis in obese patients with knee osteoarthritis
LI Jianwei1 ? ZHANG Li′na2 ? ZHANG Yingmin1 ? KANG Shaoying1 ? WEI Meng1
1.Department of Orthopedics, Handan Central Hospital, Hebei Province, Handan ? 056000, China; 2.Department of Cardiology, Handan Central Hospital, Hebei Province, Handan ? 056000, China
[Abstract] Objective To study the correlation between abnormal methylation of miR-203 gene promoter region in synovial tissues and the level of joint fluid proinflammatory factors in obese knee osteoarthritis (KOA). Methods Synovial tissue and joint fluid of KOA patients were taken from 36 patients who underwent knee arthroplasty in Handan Central Hospital in Hebei Province from January 2018 to January 2019. Patients with body mass index (BMI)≥28.0 kg/m2 were included in the obesity group (23 cases), and patients with 18.0 kg/m2≤BMI≤23.9 kg/m2 were included in the normal control group (13 cases). Methylation specific PCR (MSP) was used to detect the methylation status of the gene promoter region of miR-203 in synovial tissues. The expression level of miR-203 in synovial tissues was determined by quantitative polymerase chain reaction (qPCR). qPCR was used to detect the expression levels of miR-203 in the obese group and the normal control group. Pearson correlation analysis was used to investigate the correlation between miR-203 and BMI, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in joint fluid. Results In the synovial tissues of the obese group, the promoter region of miR-203 gene was abnormally hypomorphic, while in the normal control group, it was partially hypomorphic. Compared with the normal control group, the expression level of miR-203 in synovial tissues of the obesity group was increased, and the difference was statistically significant (P < 0.05). The relative expressions of IL-1β, IL-6 and TNF-α in the joint fluid of the obese group were higher than those of the normal control group, with statistically significant differences (all P < 0.05). The methylation level in the promoter region of miR-203 gene was negatively correlated with population BMI and the IL-1β, IL-6 and TNF-α in the joint fluid (all P < 0.05). The expression level of miR-203 was positively correlated with population BMI and the IL-1β, IL-6 and TNF-α in the joint fluid (all P < 0.05). Conclusion Hypophalation of miR-203 gene promoter in synovial tissues of KOA patients is closely related to BMI and levels of joint fluid proinflammatory factors in obese KOA patients, and miR-203 can be used as an important regulatory factor for inflammation of obese KOA and a potential target for treatment of KOA.
[Key words] Obesity; Knee osteoarthritis; microRNA; miR-203; Methylation
肥胖誘導包括膝關節骨性關節炎(knee osteoarthritis,KOA)在內多種疾病[1],而且肥胖患者體內炎性因子失衡很可能與KOA的發生相關。研究表明,膝關節滑膜組織釋放的炎性因子升高能引發關節軟骨基質退變[2]。另外,微小RNA(microRNA,miRNA)的基因啟動子區異常甲基化狀態在多種疾病中起重要的作用[3]。miR-203在脂肪代謝及軟骨細胞的炎性損傷中扮演重要調控角色[4],且已有研究表明miR-203啟動子區域的低甲基化與類風濕性關節炎(rheumatoid arthritis,RA)患者的滑膜炎癥密切相關[5]。然而,少見miR-203在KOA疾病和肥胖相關疾病中的研究。本研究初步研究了肥胖KOA患者滑膜組織中miR-203的基因啟動子區異常甲基化狀態分別與KOA患者體重指數(body mass index,BMI)、滑膜腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)、白細胞介素-1β(interleukin-1β,IL-1β)、白細胞介素-6(IL-6)的相關性。為進一步探討miR-203在肥胖KOA中的作用與機制提供線索。
1 材料與方法
1.1 臨床樣本
KOA患者滑膜組織及關節液取自河北省邯鄲市中心醫院(以下簡稱“我院”)于2018年1月~2019年1月行膝關節人工關節置換的36例K-L評分Ⅳ級的KOA患者。按照2003年中國肥胖工作組制定的《中國成人超重和肥胖癥預防和控制指南》[7]的建議,將BMI≥28.0 kg/m2的患者納入肥胖組,18.0 kg/m2≤BMI≤23.9 kg/m2的患者納入正常對照組。其中正常對照組13例,肥胖組23例。組織及關節液RNA穩定試劑處理后,-80℃保存。KOA的診斷符合《骨關節炎診療指南(2018年版)》的KOA診斷標準[6]。本研究經我院醫學倫理委員會審查通過。所有患者簽署知情同意書。
1.2 基因組DNA提取和重亞硫酸鹽修飾
應用Universal GenomicDNA Extraction KitVer 3.0試劑盒(TaKaRa Bio Inc.;貨號:DV811A)提取滑膜組織的DNA。紫外-可見分光光度法測定DNA純度(1.8 1.3 甲基化特異性PCR(methylation specific PCR,MSP) The University of California,Santa Cruz′s Genome Technology Center用來搜索miR-203的基因序列。應用Methprimer (http://www.urogene.org/index.html)掃描miR-203的基因序列發現4個CpG島。BDGP(http://fruitfy.org:9005/seq_tools/promoter.html)掃描miR-203的基因序列發現3個啟動子區評分>0.9,分別位于115~173、941~977、1726~1736 bp。經過對比,確定胞嘧啶—磷酸—鳥嘌呤(CpG)島位于miR-203的基因啟動子區[8]。 甲基化產物長度124 bp,非甲基化產物長度125 bp。反應產物應用TaKaRa Taq Hot Start Version試劑盒(Takara Bio Inc.;貨號:DR007A)進行PCR擴增。反應條件為:94℃ 5 min;94℃ 30 s;58℃ 30 s;72℃ 30 s,40個循環;72℃孵育10 min。結果觀察:5 μL PCR產物經瓊脂糖凝膠電泳溴化乙錠染色后于紫外線照射下直接觀察。 1.4 實時定量PCR 按TianGen試劑盒說明書步驟提取滑膜組織總RNA,抽提好的RNA按照TaKaRa(PrimeScript@RT reagent kit;貨號:RR047A)試劑盒的反轉錄體系進行反轉錄,將反轉錄產物4℃保存。參照Power UpTM。SYBR Green Master Mix PCR試劑盒(Thermo Fisher Scientific;貨號:4309155)說明,以上述反轉錄cDNA為模板進行miR-203的定量聚合酶鏈反應(quantitative polymerase chain reaction,qPCR)擴增。采用2-ΔΔCt法計算,以人U6基因作為內參,計算miR-203的相對表達量。 1.5 酶聯免疫吸附試驗(enzyme-linked immunosorbent assay,ELISA) 按照制造商的說明書使用酶聯免疫試劑盒測定(R&DSystems,Minneapolis,MN)關節液中IL-1β、IL-6、TNF-α的濃度。所有實驗重復至少3次。 1.6 統計學方法 采用SPSS 19.0對所得數據進行統計學分析,計量資料采用均數±標準差(x±s)表示,采用兩樣本t檢驗。計數資料采用百分率表示,采用χ2檢驗。采用Pearson相關系數分析法對miR-203表達量(2-ΔΔCt)與BMI、IL-1β、IL-6、TNF-α進行相關性分析。以P < 0.05為差異有統計學意義。
2 結果
2.1 兩組患者基本情況比較
共納入KOA患者共36例,肥胖組中男11例,女12例;正常對照組中男6例,女7例。兩組患者男女比例、年齡比較,差異無統計學意義(P > 0.05);兩組患者BMI比較,差異有統計學意義(P = 0.000)。見表1。
表1 ? 兩組患者基本情況比較(x±s)
注:與正常對照組比較,*P < 0.05;BMI:體重指數
2.2 肥胖KOA患者滑膜組織中miR-203基因啟動子區呈異常低甲基化狀態
肥胖組滑膜組織中miR-203基因啟動子區呈異常低甲基化狀態,正常對照組則呈部分低甲基化狀態。見圖1。
M:高甲基化;U:低甲基化
圖1 ? 滑膜組織中甲基化特異性PCR反應結果
2.3 miR-203在KOA患者滑膜組織中表達情況
肥胖組滑膜組織中miR-203的表達水平(4.56±0.26)高于正常對照組滑膜組織中miR-203的表達水平(1.00±0.07),差異有統計學意義(t = 49.891,P = 0.000)。
2.4 兩組患者關節液中IL-1β、IL-6、TNF-α的表達水平比較
肥胖組關節液中IL-1β,IL-6,TNFα的相對表達均高于正常對照組,差異均有統計學意義(均P < 0.05)。見表2。
表2 ? 兩組患者關節液中IL-1β、IL-6、TNF-α的表達水平比較(x±s)
注:IL-1β:白細胞介素-1β;IL-6:白細胞介素-6;TNF-α:腫瘤壞死因子-α
2.5 滑膜組織中miR-203基因啟動子區甲基化狀態和miR-203水平與關節液中促炎因子相關性
miR-203基因啟動子區甲基化水平與人群BMI和關節液中IL-1β、IL-6、TNF-α均呈負相關(均P < 0.05);miR-203表達水平和與人群BMI和關節液中IL-1β、IL-6、TNF-α均呈正相關(均P < 0.05)。見表3。
3 討論
肥胖是一種機體脂肪組織總含量過多和局部含量增多及分布異常的慢性代謝性疾病。肥胖脂肪組織中的促炎因子IL-1β、IL-6、TNF-α升高[9-10]。有學者認為,肥胖是一種“慢性低度炎癥狀態”,可誘導包括KOA在內多種疾病[11]。膝關節滑膜組織釋放的炎性因子升高與關節軟骨基質退變密切相關,因此需要深入探索其發生發展的分子機制,為探明肥胖和KOA的發生機制提供新的研究思路。
miRNA調控細胞的免疫、炎癥、發育、增殖、分化、凋亡等生理活動及惡性腫瘤等疾病的發生發展[12-15]。因此,控制miRNA的表達可能發揮重要作用。研究表明,遺傳學調控方式是最關鍵的miRNA表達調控機制之一[16]。在肥胖和炎癥相關疾病發生發展過程中,功能性的miRNA的基因啟動子區異常升高或降低甲基化狀態可起重要作用[17]。本研究結果顯示,肥胖KOA患者滑膜組織中miR-203的基因啟動子區甲基化水平降低,而其在滑膜組織中表達增高。與本研究類似的是,RA滑膜成纖維細胞中miR-203基因啟動子區同樣呈現低甲基化[5]。以上研究提示,基因啟動子區甲基化水平降低和miR-203的表達增高在關節滑膜炎癥發展過程中扮演重要角色。
研究發現,與正常個體比較,肥胖者體內更易于產生IL-1β,IL-6,IL-18及TNF-α[5,18]。這些因子可能對肥胖相關疾病有重要影響[19-20]。早期研究表明,肥胖對軟骨代謝有較大影響[21],且IL-1β在OA患者體內被高度誘導,并且與BMI正相關[22]。本研究肥胖組滑膜液中3種促炎因子IL-1β、IL-6、TNF-α水平高于正常對照組,與以上研究結果一致。提示體重的增加對于骨關節腔內炎性水平有正向影響。另外,最新研究表明miR-203調節肥胖脂肪組織代謝,且miR-203可以抑制抗炎信號IFN-γ[23]。本研究顯示miR-203基因啟動子區甲基化狀態與BMI和促炎因子IL-1β、IL-6、TNF-α均呈負相關,而miR-203表達升高與BMI和促炎因子IL-1β、IL-6、TNF-α均呈正相關,說明miR-203可能在肥胖KOA滑膜中扮演促進炎癥的作用,且調節機制可能是miR-203基因啟動子區的低甲基化水平。類似的是,RA患者滑膜成纖維細胞中miR-203被上調[5];另外,RA滑膜成纖維細胞的高水平炎癥可能通過miR-203基因啟動子區域的低甲基化來調節,而直接的證據也表明miR-203表達改變能調節滑膜細胞基質金屬蛋白酶MMP-1和促炎因子IL-6水平[5]。以上研究提示miR-203基因啟動子區甲基化調節的miR-203水平上調與肥胖KOA患者關節腔內炎性水平密切相關。
綜上所述,miR-203可作為KOA疾病的重要調控因子。滑膜組織中miR-203表達上調,且與BMI呈正相關,提示miR-203在肥胖KOA疾病防治中的潛在作用。但仍需進一步設計體外和體內實驗探明miR-203在肥胖KOA疾病中的作用和下游調控機制。
[參考文獻]
[1] ?安琪兒,張帥,江文宇,等.促進老年退行性骨關節炎軟骨內源性修復的化合物研究進展[J].現代生物醫學進展,2019(2):383-388.
[2] ?朱瑜琪,王智耀,張帥,等.細胞因子與膝骨關節炎關節軟骨損傷的修復[J].中國組織工程研究,2017,21(36):5873-5878.
[3] ?Oshima G,Poli EC,Bolt MJ,et al. DNA methylation controls metastasis-suppressive 14q32-encoded miRNAs [J]. Cancer Res,2019,79(3):650-662.
[4] ?Wang Z,Chi X,Liu L,et al. Long noncoding RNA maternally expressed gene 3 knockdown alleviates lipopolysaccharide-induced inflammatory injury by up-regulation of miR-203 in ATDC5 cells [J]. Biomed Pharmacother,2018, 100:240-249.
[5] ?Tavasolian F,Abdollahi E,Rezaei R,et al. Altered expression of microRNAs in rheumatoid arthritis [J]. J Cell Biochem,2018,119(1):478-487.
[6] ?王弘德,李升,陳偉,等.《骨關節炎診療指南(2018年版)》膝關節骨關節炎部分的更新與解讀[J].河北醫科大學學報,2019,40(9):993-995,1000.
[7] ?中國肥胖問題工作組.中國成人超重和肥胖癥預防與控制指南(節錄)[J].營養學報,2004,26(1): 1-4.
[8] ?Briem E,Budkova Z,Sigurdardottir AK,et al. MiR-203a is differentially expressed during branching morphogenesis and EMT in breast progenitor cells and is a repressor of peroxidasin [J]. Mech Develop,2019,155:34-47.
[9] ?Poret JM,Souza-Smith F,Marcell SJ,et al. High fat diet consumption differentially affects adipose tissue inflammation and adipocyte size in obesity-prone and obesity-resistant rats [J]. Int J Obes (Lond),2018,42(3):535-541.
[10] ?趙會娟,尹曉琳,王園園,等.iNKT細胞在肥胖脂肪組織慢性炎癥發生中的作用[J].醫學研究與教育,2018, 35(1):19-24.
[11] ?Jiang LF,Fang JH,Wu LD. Role of infrapatellar fat pad in pathological process of knee osteoarthritis:Future applications in treatment [J]. World J Clin Cases,2019,7(16):2134-2142.
[12] ?Bots STF,Hoeben RC. Herpesvirus microRNAs for use in gene therapy immune-evasion strategies [J]. Gene Ther,2017,24(7): 385-391.
[13] ?Nejad C,Stunden HJ,Gantier MP. A guide to miRNAs in inflammation and innate immune responses [J]. FEBS J,2018,285(20):3695-3716.
[14] ?Xue H,Li MX. MicroRNA-150 protects against cigarette smoke-induced lung inflammation and airway epithelial cell apoptosis through repressing p53:MicroRNA-150 in CS-induced lung inflammation [J]. Hum Exp Toxicol,2018,37(9):920-928.
[15] ?Lin ZY,Chen G,Zhang YQ,et al. MicroRNA-30d promotes angiogenesis and tumor growth via MYPT1/c-JUN/VEGFA pathway and predicts aggressive outcome in prostate cancer [J]. Mol Cancer,2019,18(1):122.
[16] ?Vaccaro TDS,Sorrentino JM,Salvador S,et al. Alterations in the MicroRNA of the Blood of Autism Spectrum Disorder Patients:Effects on Epigenetic Regulation and Potential Biomarkers [J]. Behav Sci(Basel),2018,8(8):pii:E75.
[17] ?Mansego ML,Garcia-Lacarte M,Milagro FI,et al. DNA methylation of miRNA coding sequences putatively associated with childhood obesity [J]. Pediatr Obes,2017,12(1):19-27.
[18] ?Fu Y,Huebner JL,Kraus VB,et al. Effect of Aging on Adipose Tissue Inflammation in the Knee Joints of F344BN Rats [J]. J Gerontol A Biol Sci Med Sci,2016, 71(9):1311-1140.
[19] ?Orekhov AN,Nikiforov NG,Elizova NV,et al. Tumor Necrosis Factor-α and CC Motif Chemokine Ligand 18 Associate with Atherosclerotic Lipid Accumulation In situ and In vitro [J]. Curr Pharm Design,2018,24(24):2883-2889.
[20] ?Yaribeygi H,Atkin SL,Sahebkar A. Interleukin-18 and diabetic nephropathy:A review [J]. J Cell Physiol,2018, 234(24):5674-5682.
[21] ?Votava L,Schwartz AG,Harasymowicz NS,et al. Effects of dietary fatty acid content on humeral cartilage and bone structure in a mouse model of diet-induced obesity [J]. J Orthop Res,2019,37(3):779-788.
[22] ?Clockaerts S,Bastiaansen-Jenniskens YM,Runhaar J,et al. The infrapatellar fat pad should be considered as an active osteoarthritic joint tissue: a narrative review [J]. Osteoarthritis Cartilage,2010,18(7):876-882.
[23] ?Guo X,Zhang Z,Zeng T,et al. cAMP-MicroRNA-203-IFNγ network regulates subcutaneous white fat browning and glucose tolerance [J]. Mol Metab,2019,28:36-47.
(收稿日期:2019-11-11 ?本文編輯:顧家毓)