王恒



摘 要:為了提高伯克霍爾德氏菌Burkholderia sp.ZYB002發酵液降解馬尾松樹脂的效價,對培養基進行優化。通過單因素試驗確定1%葡萄糖為發酵最適碳源、0.3%尿素和2%玉米粉為最適復合氮源。采用響應面法得到3種主控因子最佳配比:葡萄糖0.576%、橄欖油1.81%、接種量2.57%,優化后降解馬尾松樹脂的效價提高到42.5%;運用BPGA耦合法得到最佳配比:葡萄糖0.6763%、橄欖油1.8034%、接種量3.3813%,優化后馬尾松樹脂的降解效價提高到47.4%。結果還表明:BPGA耦合法較響應面更具優化效應,優化后比初始降解效價提高了38.6%。通過BPGA耦合法優化后,Burkholderia sp.ZYB002菌株的搖瓶發酵最佳培養基組成為: 葡萄糖0.6763%、玉米粉1.2%、橄欖油1.8034%、尿素(氮含量)0.05%、K2HPO4 0.2%、NaHCO3 0.1%、吐溫80 1.0%、初始pH 8.5。培養條件:發酵溫度為30℃,接種量3.3813%,搖床轉速 220 r·min-1,裝液量 35 mL(250 mL三角瓶),培養時間 36 h。
關鍵詞:馬尾松樹脂;響應面;神經網絡;遺傳算法;培養基優化
Abstract: In order to improve the titer of Pinus massoniana resin degraded by the fermentation broth of Burkholderia sp.ZYB002, the medium was optimized. The single factor experiment was carried out to determine that 1% glucose was the most suitable carbon source for the fermentation, 0.3% urea and 2% corn flour were the most suitable compound nitrogen sources. The response surface method was used to obtain the optimal ratio of the three main control factors: glucose 0.576%, olive oil 1.81% and inoculation quantity 2.57%. After the optimization, the degradation titer of Pinus massoniana resin was increased to 42.5%. While the optimal ratio was obtained by the BPGA coupled method: glucose 0.6763%, olive oil 1.8034%, inoculation quantity 3.3813%. After the optimization, the degradation titer of Pinus massoniana resin was increased to 47.4%. The results also showed that compared with the response surface method, the BPGA coupled method had the better optimization effect, and the titer after the optimization was improved by 38.6% compared with the initial degradation titer. After the optimization by the BPGA coupled method, the optimal medium composition for the shakeflask fermentation of Burkholderia sp.ZYB002 was: glucose 0.6763%, corn flour 1.2%, olive oil 1.8034%, urea (nitrogen content) 0.05%, K2HPO4 0.2%, NaHCO3 0.1%, Tween 80 1.0%, and initial pH 8.5. The culture condition was as follows: the fermentation temperature was 30℃, the inoculation quantity was 3.3813%, the shaking speed was 220 r·min-1, the loaded liquid was 35 mL(250 mL triangular flask), and the culture time was 36 h.
Key words: Pinus massoniana resin; Response surface; Neural network; Genetic algorithm; Culture medium optimization
通常木材中含有一些脂肪酸、樹脂酸、甘油三酸酯以及不皂化的化合物等脂溶性物質,依據樹種、環境和季節的不同,這些脂溶性物質約占木材總量的2%~8%[1],在馬尾松中的含量一般在4%以上[2]。在造紙制漿的過程中,這些不溶于水的脂溶性物質會被游離出來,當紙漿中的溫度和pH值下降到一定程度時,黏附在金屬和紙張上,從而對輸送紙漿管道、抄紙工藝以及整個回水的循環利用過程造成不利的影響,還會造成紙張有斑點破洞或引起紙幅斷頭等,這些危害稱為樹脂障礙[3-4]。目前解決樹脂障礙的方法主要有木材陳良法[5]、化學控制法[6]、微生物法[7]和生物酶法[8]等。生物酶法(脂肪酶)具有反應條件溫和、環保,并且能夠從根本上將樹脂降解成水溶性較強的脂肪酸和甘油[8-9]。本課題采用的伯克霍爾德氏菌Burkholderia sp.ZYB002是張巖峰[10]篩選的產脂肪酶菌株,利用該菌株的發酵液來降解樹脂,可省去純脂肪酶的制備過程,發酵液中本身帶有以脂肪酶為主導的酶系,可能會收到更好的降解樹脂效果。
該方程的相關性系數Rsquare為92.74%,說明該模型與實際的降解率擬合良好,可以用于降解馬尾松樹脂效價的分析和預測。由表6可知,交互項X8×X10的系數和均方差較大,X1×X8、X1×X10的系數和均方差較小,說明因素X8和X10相互影響較大,X1與X8、X10的相互影響較小。通過分析可知,該模型Pr>F的概率為 0.0220,說明該回歸方程具有可靠性。
由圖3可以看出X8、X10存在極值點,進行嶺分析,回歸方程模型中存在最優點(-0.20080,0.66206,-0.72205 ),實際值即葡萄糖0.576%,橄欖油1.81% ,接種量2.57%,相對應的Y最大估計值為45.9191±0.46506。為了驗證模型分析中最大預測值,最優點組合做了3組重復試驗。
2.5 BP神經網絡與遺傳算法耦合優化分析
2.5.1 BP神經網絡模型的建立 通用 MATLAB 軟件反復的測試發現隱含層數為1,神經元個數為9時,能精確地擬合試驗數據,因此神經網絡的拓撲結構為 3-9-1。將輸入層-隱藏層傳遞函數設定為tansig函數,訓練函數設定為traingdm函數,為減少訓練時間,先對樣本進行歸一化處理,收斂精度取10-5,最大訓練步數設定為8000,在此基礎上建立發酵培養基的神經網絡模型。由建立的BP神經網絡模型預測值為42.7%,實測值為44.1%,相對誤差百分比為3.28%,說明建立的模型泛化能力強,可以用于對試驗數據進行預測。
2.5.2 遺傳算法對BP神經網絡的優化結果 通過神經網絡實現正確的輸入輸出映射關系,將神經網絡輸出作為求解目標函數值,利用遺傳算法對發酵培養基進行全局尋優[11],從而獲得最優的發酵培養基組合,實現馬尾松樹脂降解率的提高。通過MATLAB軟件編程,將遺傳算法的初始種群設定為40,交叉概率為0.8,變異概率0.05,終止代數100。遺傳算法尋優結果如圖4所示,通過迭代30次,適度函數值趨于穩定,GA找到了模型的最大值。
2.5.3 優化培養基發酵檢測 使用BP神經網絡-遺傳算法耦合模型對發酵培養基進行全局尋優,得到最優化發酵培養基組成(葡萄糖0.6763%、橄欖油1.8034%、接種量3.3813%),根據BP模型預測該組合的降解率為46.5%,實測值為47.4%。同時與原始培養基、響應面優化的培養基進行橫向對比,結果如表7所示。分析表明,用BPGA耦合法優化的培養基馬尾松樹脂的降解率和BP預測值間的誤差小于2%;而用響應面法的預測值(45.9%)與實際值(42.5%)之間誤差達到7.41%,這說明BP神經網絡建模法非常適合該發酵培養基的優化,具有較高的仿真精度。
3 討論與結論
在單因子試驗中確立了葡萄糖為最佳碳源,尿素和玉米粉作為復合氮源。然后利用響應面法和BP神經網絡遺傳算法耦合法對Burkholderia sp.ZYB002菌株發酵培養基進行優化,分別比原始培養基提高了24.3%、38.6%,表明BPGA耦合法比響應面法在該發酵培養基優化中更加顯著。由于BP神經網絡有很強的輸入輸出非線性映射能力,具有較高的仿真精度,能夠很精確地擬合樹脂降解率與培養基主要組分之間的內在聯系,再加上遺傳算法具有迅速全局尋優能力,因此利用BPGA耦合方法進行Burkholderia sp.ZYB002發酵培養基的優化是一種行之有效的途徑。
通過BPGA耦合法優化后,Burkholderia sp.ZYB002菌株的搖瓶發酵最佳培養基組成為:葡萄糖0.6763%、玉米粉1.2%、橄欖油1.8034%、尿素(氮含量)0.05%、K2HPO4 0.2%、NaHCO3 0.1%、吐溫80 1.0%、初始pH 8.5。培養條件:發酵溫度為30℃,接種量3.3813%,搖床轉速 220 r·min-1,裝液量 35 mL(250 mL三角瓶),培養時間 36 h。
參考文獻:
[1]謝來蘇.制漿造紙的生物技術[M].北京:化學工業出版社,2003:120-124.
[2]陳嘉翔,秦夢華.樹脂的成分及用脂肪酶消除樹脂障礙[J].紙和造紙,1997(3):40-41.
[3]ZHANG X.The effect of whitewater dissolved and colloidal fraction on paper properties and effect of various enzyme treatments on the removal of organic components[J].Pulp and Paper Can,2000,101(3):59-32.
[4]MATS RUNDLOF,MARIE ERIKSSON,HELENE STROM,et al.Effect of mannanase and lipase on the properties of colloidal wood extractives and their interaction pulp fines[J].Cellulose,2002,9:127-137.
[5]張達俊.造紙工業中的樹脂障礙[J].西南造紙,2001(6):37.
[6]HOLTON J E, MOEBUS C R.Control of pitch stickies gunkand tramp organics in pukp and paper mills[J].Pulp Paper Canada,1982,83(4):100-106.
[7]GUTIRREZ A, JOSC, MARTNEZ A T.Microbial and enzymatic control of pitch in the pulp and paper industry[J].Applied microbiology and biotechnology, 2009,82(6):1005-1018.
[8]KONTKANEN H,TENKANEN M,FAGERSTROM R,et al.Characterisation of steryl esterase activities in commercial lipase preparations[J].J Biotechnol,2004,108:51-59.
[9]HATA K,MATSUKURA M,TANEDA H, et al.Millscale application of enzymatic pitch control during paper production[C]//ACS Symposium Series.Washington, DC: American Chemical Society, 1996, 655: 280-296.
[10]張巖峰.Burkholderia sp. ZYB002產脂肪酶條件優化及脂肪酶基因克隆[D].福州:福建師范大學, 2009.
[11]周勇,鄭毅,宋利丹.人工神經網絡與遺傳算法耦合法優化輔酶Q10發酵培養基[J].中國生物工程雜志, 2013, 33(9):73-78.
[12] 彭鋒,李安明. BP神經網絡和遺傳算法在紅發夫酵母培養基優化中的應用[J]. 應用與環境生物學報,2008,14 (6):834-837.
[13]代志凱,張翠,阮征.試驗設計和優化及其在發酵培養基優化中的應用[J].微生物學通報, 2010, 37(6): 894-903.
[14]鐘珞,饒文碧,等.人工神經網絡及其融合應用技術[M].北京:科學出版社,2007:69-76.
[15]舒正玉,陳建平,吳繼光,等.脂肪酶降解馬尾松TMP漿中的三酰甘油酯類物質[J].中國造紙, 2011, 30(7):12-15.
(責任編輯:柯文輝)