王雪 蒙臣 曾文 王軼銘 王賢裕 李清
[摘要] 緊密連接分布于機(jī)體的各個(gè)組織器官和腫瘤組織,對(duì)屏障組織損傷修復(fù)和腫瘤組織發(fā)生發(fā)展均起著重要作用。表皮生長因子受體(EGFR)也廣泛表達(dá)于這些組織中,其活化影響著屏障和腫瘤組織中緊密連接的狀態(tài)變化,但影響卻明顯不同:激活EGFR信號(hào)通路能增強(qiáng)屏障組織中的緊密連接,抑制其破壞;但卻使腫瘤細(xì)胞間的緊密連接減少,促使細(xì)胞離散轉(zhuǎn)移。研究這種具體的影響和機(jī)制能為通過干預(yù)EGFR信號(hào)通路來治療屏障功能損傷的相關(guān)疾病和腫瘤提供新的思路。
[關(guān)鍵詞] 表皮生長因子受體;緊密連接;組織損傷;修復(fù);腫瘤侵襲
[中圖分類號(hào)] Q28? ? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼] A? ? ? ? ? [文章編號(hào)] 1673-7210(2020)05(c)-0037-04
Research progress on the effects and mechanisms of epithelial growth factor receptor on tight junction
WANG Xue1,2? ?MENG Chen1,2? ?ZENG Wen1,2? ?WANG Yiming1,2? ?WANG Xianyu1,2? ?LI Qing1,2
1.Department of Anesthesiology, Affiliated Hospital of Hubei University of Medicine (Taihe Hospital of Shiyan City), Hubei Province, Shiyan? ?442000, China; 2.Institute of Anesthesiology, Department of Science and Technology, Hubei University of Medicine, Hubei Province, Shiyan? ?442000, China
[Abstract] Tight junction is widely distributed in various organs and tumor tissues of the body, and plays an important role in the injury and repair of the barrier tissues, as well as in the development of the tumor tissues. Epithelial growth factor receptor (EGFR) is also expressed in these tissues, and its activation affects the state changes of tight junction of barrier and tumor tissues. However, the effects are significantly different: activation of the EGFR signaling pathway can enhance tight junction in barrier tissues and inhibit their destruction. Whereas, it reduces the tight junction between tumor cells and promotes the discrete cell metastasis. Therefore, studying these detailed effects and mechanisms of EGFR signaling pathway on tight junction may provide new therapeutic strategies on several barrier injury-associated diseases and tumors.
[Key words] Epidermal growth factor receptor; Tight junction; Tissue injury; Wound healing; Metastasis
機(jī)體依靠特定的細(xì)胞和細(xì)胞間連接形成各類屏障,這些屏障不僅能夠抵抗“外敵入侵”,而且在體內(nèi)發(fā)揮重要的生理功能。近年來,緊密連接作為一種特殊的細(xì)胞間連接,成為病理生理及新藥研發(fā)的研究靶點(diǎn),愈來愈受到關(guān)注[1]。研究[2-3]顯示,表皮生長因子受體(EGFR)信號(hào)通路不僅影響著緊密連接的功能狀態(tài),也與緊密連接共同參與組織損傷修復(fù)與腫瘤發(fā)生發(fā)展。那么EGFR信號(hào)通路在這兩個(gè)過程中是如何影響緊密連接而發(fā)揮作用的呢?本文將對(duì)該問題的研究進(jìn)展作一綜述。
1 緊密連接的基本結(jié)構(gòu)
緊密連接幾乎分布于機(jī)體所有的屏障結(jié)構(gòu)(皮膚、胃腸道、呼吸道、血管等),也包括腫瘤組織[4]。其主要由閉合蛋白(Occludin)、密封蛋白(Claudin)與連接黏附分子(Zonula Occludens,ZO)等蛋白組成,這些緊密連接蛋白的膜表達(dá)量與屏障物理防御功能影響密切[5]。其中,Claudin和Occludin蛋白[6]能夠與ZO-1蛋白交互連接,形成緊密連接復(fù)合體[7],這種復(fù)合體使相鄰細(xì)胞接觸結(jié)合,從而形成穩(wěn)定的連接。緊密連接的結(jié)構(gòu)穩(wěn)定反映了屏障功能的完整性,緊密連接受損則導(dǎo)致細(xì)胞間連接松散,細(xì)胞離散甚至脫落,屏障通透性增加,屏障內(nèi)液體、細(xì)胞或細(xì)胞因子等逃逸,進(jìn)而對(duì)機(jī)體造成損傷。需要注意的是,不同種類的緊密連接蛋白按一定的比例精密組合成緊密連接復(fù)合體,其中緊密連接蛋白的種類、比例和空間結(jié)構(gòu)均處于穩(wěn)定狀態(tài)[8],若這個(gè)穩(wěn)態(tài)被打破,如某一緊密連接蛋白的表達(dá)量升高或降低,緊密連接復(fù)合體都可能遭到破壞,引起屏障功能受損[8]。
2 EGFR的表達(dá)分布與緊密連接基本一致
在屏障結(jié)構(gòu)及腫瘤細(xì)胞膜表面,還廣泛分布著一種跨膜酪氨酸激酶受體——EGFR。EGFR信號(hào)通路能促進(jìn)細(xì)胞增殖與分化,抑制損傷,調(diào)節(jié)組織的發(fā)育和穩(wěn)態(tài)[3]。研究顯示[9],在腫瘤細(xì)胞增殖與轉(zhuǎn)移的過程中,EGFR會(huì)發(fā)生明顯活化,且在屏障功能被破壞的損傷組織中,EGFR也明顯被激活。值得注意的是,這兩個(gè)過程中均發(fā)生了緊密連接的破壞。那么EGFR的活化是如何影響緊密連接的狀態(tài)變化呢?
3 EGFR信號(hào)通路對(duì)屏障組織緊密連接的影響
研究[10]顯示,激活EGFR信號(hào)通路能夠保護(hù)緊密連接,減少屏障結(jié)構(gòu)破壞。例如在腸道組織中,細(xì)菌內(nèi)毒素會(huì)造成腸上皮細(xì)胞損傷,腸道屏障破壞,腸道上皮通透性增加;而激活EGFR能夠增加腸道上皮細(xì)胞中Claudin-1、Occludin和ZO-1的表達(dá)水平,使腫瘤壞死因子-α(TNF-α)、白細(xì)胞介素(IL)-6、IL-8、IL-1β等促炎因子的表達(dá)降低,從而緩解內(nèi)毒素所導(dǎo)致的腸道損傷。在腦組織中,當(dāng)微血管內(nèi)皮細(xì)胞EGFR的激活水平減少時(shí),ZO-1和Occludin的表達(dá)量隨之降低,血腦屏障通透性增加,腦組織水腫;而激活EGFR能夠抑制血腦屏障細(xì)胞中Claudin-5和ZO-1的損失,穩(wěn)定屏障結(jié)構(gòu),保護(hù)大腦功能[11]。在呼吸系統(tǒng)中,抑制EGFR能夠下調(diào)氣道上皮中ZO-1和Occludin的表達(dá),增加氣道上皮的通透性;EGFR信號(hào)通路也能緩解內(nèi)毒素誘導(dǎo)的肺組織上皮細(xì)胞間緊密連接結(jié)構(gòu)損傷[12]。
EGFR信號(hào)通路不僅抑制緊密連接蛋白數(shù)量損失,還能促進(jìn)其再分布,從而穩(wěn)定屏障功能。在哮喘模型中,用地塞米松處理人支氣管上皮細(xì)胞后,細(xì)胞中EGFR磷酸化水平升高,細(xì)胞接觸部位的ZO-1和Occludin局灶性表達(dá)增強(qiáng)。然而,ZO-1和Occludin總蛋白表達(dá)并無影響,提示糖皮質(zhì)激素通過促進(jìn)EGFR磷酸化,在不改變緊密連接蛋白總量的情況下,增加了細(xì)胞間接觸部位的緊密連接蛋白局部表達(dá)量,促進(jìn)支氣管上皮細(xì)胞間緊密連接蛋白的再分布,以此增強(qiáng)氣道屏障的完整性[13]。
緊密連接復(fù)合物具有內(nèi)在可塑性,其結(jié)構(gòu)能夠快速發(fā)生拆卸和重建[14]。當(dāng)細(xì)胞屏障遭到破壞后,緊密連接蛋白會(huì)重新組成復(fù)合物,重建屏障結(jié)構(gòu),而EGFR信號(hào)通路在此過程中也發(fā)揮重要作用[15]。
4 EGFR信號(hào)通路對(duì)腫瘤組織屏障功能的影響
目前臨床上已有多種EGFR拮抗劑用于治療一些特定腫瘤,如非小細(xì)胞肺癌、頭頸部鱗狀細(xì)胞癌、結(jié)直腸癌、胰腺癌等[16],EGFR對(duì)腫瘤組織的侵襲、生長有重要影響。腫瘤細(xì)胞轉(zhuǎn)移經(jīng)歷了脫離、遷移和定植生長等過程[17]。在一些腫瘤組織中,激活EGFR信號(hào)通路能通過上調(diào)某些緊密連接蛋白的表達(dá)水平,破壞緊密連接復(fù)合體的穩(wěn)態(tài),促進(jìn)腫瘤細(xì)胞的脫離和遷移。有研究[18-19]發(fā)現(xiàn),肺腺癌中Claudin-2的表達(dá)量比正常組織明顯升高,肺腺癌細(xì)胞的基質(zhì)金屬蛋白酶能夠增強(qiáng)其配體-表皮生長因子的分泌,主動(dòng)激活EGFR信號(hào)通路,上調(diào)Claudin-2表達(dá),破壞緊密連接復(fù)合體,促進(jìn)肺腺癌轉(zhuǎn)移。在膽管上皮內(nèi)瘤變和膽管腺癌中,Claudin-18作為反映其惡性程度的標(biāo)志物,激活EGFR信號(hào)通路刺激Claudin-18的表達(dá)水平升高,增加膽管癌細(xì)胞的轉(zhuǎn)移傾向[20]。而在另一些腫瘤中,EGFR則會(huì)下調(diào)某些緊密連接蛋白的表達(dá),促進(jìn)腫瘤轉(zhuǎn)移。與正常上皮比較,結(jié)直腸腫瘤原發(fā)灶中的ZO-1表達(dá)水平顯著降低[21],激活EGFR會(huì)下調(diào)結(jié)直腸細(xì)胞的ZO-1蛋白表達(dá),使腫瘤細(xì)胞間的連接變?nèi)?,單個(gè)癌細(xì)胞的活動(dòng)性增強(qiáng),更容易隨循環(huán)播散。
另外,EGFR還能影響腫瘤轉(zhuǎn)移后的重新定植。有研究[11]顯示,人肺腺癌上皮細(xì)胞A549經(jīng)表皮生長因子處理后,EGFR信號(hào)通路活化,Claudin-2表達(dá)水平升高46%,此時(shí)Claudin-2上調(diào)引起的細(xì)胞定植是之前的4倍,即EGFR信號(hào)協(xié)同Claudin-2促進(jìn)腫瘤定植。在結(jié)直腸癌肝轉(zhuǎn)移的腫瘤組織中,激活EGFR信號(hào)通路能使腫瘤原發(fā)灶中ZO-1的表達(dá)水平降至正常上皮的20.8%,而肝轉(zhuǎn)移灶處,ZO-1的表達(dá)水平卻恢復(fù)至正常上皮的79.2%,提示腫瘤細(xì)胞在原發(fā)灶處松解緊密連接便于轉(zhuǎn)移,而在轉(zhuǎn)移灶處重新形成緊密連接,促進(jìn)轉(zhuǎn)移癌細(xì)胞定植[22]。
5 EGFR影響緊密連接的機(jī)制
5.1 EGFR信號(hào)通路抑制凋亡而保護(hù)緊密連接
EGFR信號(hào)通路能夠顯著抑制細(xì)胞凋亡,促進(jìn)生存[23]。緊密連接破壞作為細(xì)胞凋亡的“前體事件”,是反映細(xì)胞早期損傷的敏感指標(biāo)[4]。當(dāng)損傷發(fā)生時(shí),緊密連接最先發(fā)生破壞,細(xì)胞間結(jié)構(gòu)變得松散,然后才逐漸發(fā)生凋亡。EGFR信號(hào)通路轉(zhuǎn)導(dǎo)激活后,影響凋亡蛋白caspase的活性,進(jìn)而抑制凋亡[24]。如細(xì)胞外信號(hào)調(diào)控激酶ERK能通過磷酸化修飾使caspase-9失活,p38不僅可以使caspase-9失活,還能抑制caspase-3和caspase-8的活性[25]。另外,EGFR信號(hào)通路下游的磷脂酰肌醇-3-激酶/蛋白激酶B(PI3K-AKT)信號(hào)通路也能顯著抑制凋亡蛋白的活性而減少凋亡發(fā)生[26]。因此,在正常屏障組織中,減少細(xì)胞凋亡是EGFR減輕緊密連接破壞的重要機(jī)制之一。然而,EGFR活化抑制腫瘤細(xì)胞的凋亡,并同時(shí)打破腫瘤細(xì)胞間緊密連接促進(jìn)其離散的機(jī)制仍不清楚。
5.2 EGFR信號(hào)通路減少炎性因子表達(dá)而影響緊密連接狀態(tài)
促炎細(xì)胞因子能夠減少某些緊密連接蛋白,破壞細(xì)胞屏障功能。EGFR信號(hào)通路活化往往伴隨著促炎細(xì)胞因子的表達(dá)減少。如在內(nèi)毒素誘發(fā)的腸損傷中,EGFR激活能明顯降低TNF-α、IL-6、IL-8、IL-1β等促炎因子的表達(dá)水平,上調(diào)腸道上皮細(xì)胞中Claudin-1、Occludin和ZO-1的含量[27]。在結(jié)直腸癌中,EGFR激活降低了炎性因子如IL-22的水平,抑制了腸道屏障的破壞[18]。這些證據(jù)提示,EGFR可能通過降低促炎細(xì)胞因子水平,減少屏障功能損傷。然而,目前尚無研究直接證明這一點(diǎn),需要實(shí)驗(yàn)進(jìn)一步證實(shí)。
5.3 EGFR信號(hào)通路可直接影響緊密連接穩(wěn)態(tài)
EGFR信號(hào)通路能夠直接作用于緊密連接蛋白。在腸道炎性反應(yīng)中,EGFR-Akt信號(hào)通路的激活能夠上調(diào)ZO-1和Occludin的表達(dá)[15]。在人肺腺癌細(xì)胞A549中,其基質(zhì)金屬蛋白酶分泌表皮生長因子,激活EGFR-ERK信號(hào)通路,促進(jìn)Claudin-2的表達(dá)。與之相反的是,自噬所激活的EGFR-AKT-mTOR信號(hào)通路卻下調(diào)了人克隆結(jié)腸腺癌細(xì)胞及犬腎細(xì)胞中的Claudin-2[28]。由此可見,在不同的細(xì)胞中,EGFR信號(hào)通路可對(duì)同一種緊密連接蛋白產(chǎn)生相反的調(diào)節(jié)作用,但機(jī)制尚不清楚。
除此之外,還有諸多機(jī)制未知,例如,為何在屏障組織中,EGFR活化能維持緊密連接蛋白的表達(dá),保護(hù)屏障功能;而在腫瘤組織中,EGFR活化卻能破壞緊密連接復(fù)合體的穩(wěn)態(tài),促使細(xì)胞離散轉(zhuǎn)移。為何在腫瘤組織中,EGFR也會(huì)產(chǎn)生相反的作用。癌細(xì)胞的遷移、定植過程中,細(xì)胞中的EGFR均發(fā)生磷酸化,但在遷移時(shí)破壞緊密連接,而在定植時(shí)卻能促進(jìn)緊密連接復(fù)合體的重組,促使細(xì)胞間重新形成連接。這些作用機(jī)制亟待我們?nèi)ヌ剿餮芯俊?/p>
6 總結(jié)
雖然緊密連接與EGFR信號(hào)通路在腫瘤與屏障組織中廣泛存在,且EGFR對(duì)緊密連接的影響研究較多,但仍存在著多種矛盾現(xiàn)象,且機(jī)制不明。這對(duì)臨床中合理使用EGFR信號(hào)通路帶來了較大的困惑。目前臨床上僅使用EGFR抑制劑來抑制某些腫瘤的生長轉(zhuǎn)移,但尚未應(yīng)用至組織屏障保護(hù)方面。如何在規(guī)避EGFR信號(hào)通路促進(jìn)腫瘤轉(zhuǎn)移侵襲的同時(shí),充分利用其對(duì)組織屏障的保護(hù)與修復(fù)作用,來治療某些重要臟器的急慢性損傷,如急性呼吸窘迫綜合征、炎癥性腸病、腦組織水腫等,這需要人們不斷地探索,我們會(huì)持續(xù)關(guān)注其研究進(jìn)展。
[參考文獻(xiàn)]
[1]? Buckley A,Turner JR. Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease [J]. Cold Spring Harb Perspect Biol,2018,10(1).pii:a029314.
[2]? Xiang J,Bandura J,Zhang P,et al. EGFR-dependent TOR-independent endocycles support Drosophila gut epithelial regeneration [J]. Nat Commun,2017,8:15125.
[3]? Sigismund S,Avanzato D,Lanzetti L. Emerging functions of the EGFR in cancer [J]. Mol Oncol,2018,12(1):3-20.
[4]? Kage H,F(xiàn)lodby P,Zhou B,et al. Dichotomous roles of claudins as tumor promoters or suppressors:lessons from knockout mice [J]. Cell Mol Life Sci,2019,76(23):4663-4672. [Epub ahead of print]
[5]? Kim S,Goel R,Kumar A,et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure [J]. Clin Sci(Lond),2018,132(6):701-718.
[6]? Kanayasu-Toyoda T,Ishii-Watabe A,Kikuchi Y,et al. Occludin as a functional marker of vascular endothelial cells on tube-forming activity [J]. J Cell Physiol,2018, 233(2):1700-1711.
[7]? Heinemann U,Schuetz A. Structural Features of Tight-Junction Proteins [J]. Int J Mol Sci,2019,20(23). pii:E6020.
[8]? Schlingmann B,Molina SA,Koval M. Claudins:Gatekeepers of lung epithelial function [J]. Semin Cell Dev Biol,2015,42(4):47-57.
[9]? Bhat AA,Uppada S,Achkar IW,et al. Tight junction proteins and signaling pathways in cancer and inflammation:a functional crosstalk [J]. Front Physiol,2019,9:1942.
[10]? Terakado M,Gon Y,Sekiyama A,et al. The Rac1/JNK pathway is critical for EGFR-dependent barrier formation in human airway epithelial cells [J]. Am J Physiol Lung Cell Mol Physiol,2011,300(1):L56-L63.
[11]? Peter Y,Comellas A,Levantini E,et al. Epidermal growth factor receptor and claudin-2 participate in A549 permeability and remodeling:implications for non-small cell lung cancer tumor colonization [J]. Mol Carcinog,2009, 48(6):488-497.
[12]? Hou Y,Wang L,Yi D,et al. N-acetylcysteine and intestinal health:a focus on mechanisms of its actions [J]. Front Biosci(Landmark Ed),2015,20:872-891.
[13]? Ge S,Jiang X,Paul D,et al. Human ES-derived MSCs correct TNF-α-mediated alterations in a blood-brain barrier model [J]. Fluids Barriers CNS,2019,16(1):18.
[14]? Wittekindt OH. Tight junctions in pulmonary epithelia during lung inflammation [J]. Pflugers Arch,2017,469(1):135-147.
[15]? Meena AS,Shukla PK,Sheth P,et al. EGF receptor plays a role in the mechanism of glutamine-mediated prevention of alcohol-induced gut barrier dysfunction and liver injury [J]. J Nutr Biochem,2019,64:128-143.
[16]? Singh D,Attri BK,Gill RK,et al. Review on EGFR Inhibitors:Critical Updates [J]. Mini reviews in medicinal chemistry,2016,16(14):1134.
[17]? Xiao K,Cao ST,Jiao le F,et al. Anemonin improves intestinal barrier restoration and influences TGF-β1 and EGFR signaling pathways in LPS-challenged piglets [J]. Innate Immun,2016,22(5):344-352.
[18]? Ciardiello F,Tortora G. EGFR Antagonists in Cancer Treatment [J]. N Engl J Med,2008,358(11):1160-1174.
[19]? Guan X. Cancer metastases:challenges and opportunities [J]. Acta Pharm Sin B,2015,5(5):402-418.
[20]? Pujada A,Walter L,Patel A,et al. Matrix metalloproteinase MMP9 maintains epithelial barrier function and preserves mucosal lining in colitis associated cancer [J]. Oncotarget,2017,8(55):94650-94665.
[21]? Hichino A,Okamoto M,Taga S,et al. Down-regulation of Claudin-2 expression and proliferation by epigenetic inhibitors in human lung adenocarcinoma A549 cells [J]. J Biol Chem,2017,292(6):2411-2421.
[22]? Keira Y,Takasawa A,Murata M,et al. An immunohistochemical marker panel including claudin-18,maspin,and p53 improves diagnostic accuracy of bile duct neoplasms in surgical and presurgical biopsy specimens [J]. Virchows Arch,2015,466(3):265-277.
[23]? Kaihara T,Kawamata H,Imura J,et al. Redifferentiation and ZO-1 reexpression in liver-metastasized colorectal cancer:possible association with epidermal growth factor receptor-induced tyrosine phosphorylation of ZO-1 [J]. Cancer Sci,2003,94(2):166-172.
[24]? Yan F,Cao H,Chaturvedi R,et al. Epidermal growth factor receptor activation protects gastric epithelial cells from helicobacter pylori-induced apoptosis [J]. Gastroenterology,2009,136(4):1297-1307,e1-e3.
[25]? Kurokawa M,Kornbluth S. Caspases and kinases in a death grip [J]. Cell,2009,138(5):838-854.
[26]? Wang M,Law ME,Davis BJ,et al. Disulfide bond-disrupting agents activate the tumor necrosis family-related apoptosis-inducing ligand/death receptor 5 pathway [J]. Cell Death Discov,2019,5:153.
[27]? Scharl M,Paul G,Barrett KE,et al. AMP-activated protein kinase mediates the interferon-γ-induced decrease in intestinal epithelial barrier function [J]. J Biol Chem,2009,284(41):27952-27963.
[28]? Huang Y,F(xiàn)eng Y,Wang Y,et al. Severe burn-induced intestinal epithelial barrier dysfunction ss associated with endoplasmic reticulum stress and autophagy in mice [J]. Front Physiol,2018,9(4):1-12.
(收稿日期:2019-12-10? 本文編輯:劉明玉)